Statistical and Topological Properties of Sliced Probability Divergences
- URL: http://arxiv.org/abs/2003.05783v3
- Date: Tue, 4 Jan 2022 14:30:00 GMT
- Title: Statistical and Topological Properties of Sliced Probability Divergences
- Authors: Kimia Nadjahi, Alain Durmus, L\'ena\"ic Chizat, Soheil Kolouri, Shahin
Shahrampour, Umut \c{S}im\c{s}ekli
- Abstract summary: We derive various theoretical properties of sliced probability divergences.
We show that slicing preserves the metric axioms and the weak continuity of the divergence.
We then precise the results in the case where the base divergence belongs to the class of integral probability metrics.
- Score: 30.258116496304662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The idea of slicing divergences has been proven to be successful when
comparing two probability measures in various machine learning applications
including generative modeling, and consists in computing the expected value of
a `base divergence' between one-dimensional random projections of the two
measures. However, the topological, statistical, and computational consequences
of this technique have not yet been well-established. In this paper, we aim at
bridging this gap and derive various theoretical properties of sliced
probability divergences. First, we show that slicing preserves the metric
axioms and the weak continuity of the divergence, implying that the sliced
divergence will share similar topological properties. We then precise the
results in the case where the base divergence belongs to the class of integral
probability metrics. On the other hand, we establish that, under mild
conditions, the sample complexity of a sliced divergence does not depend on the
problem dimension. We finally apply our general results to several base
divergences, and illustrate our theory on both synthetic and real data
experiments.
Related papers
- A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
We propose a principled approach to construct covariance estimators without imposing restrictive assumptions.
We show that our robust estimators are efficiently computable and consistent.
Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
arXiv Detail & Related papers (2024-05-30T15:01:18Z) - Synthetic Tabular Data Validation: A Divergence-Based Approach [8.062368743143388]
Divergences quantify discrepancies between data distributions.
Traditional approaches calculate divergences independently for each feature.
We propose a novel approach that uses divergence estimation to overcome the limitations of marginal comparisons.
arXiv Detail & Related papers (2024-05-13T15:07:52Z) - Computing Marginal and Conditional Divergences between Decomposable
Models with Applications [7.89568731669979]
We propose an approach to compute the exact alpha-beta divergence between any marginal or conditional distribution of two decomposable models.
We show how our method can be used to analyze distributional changes by first applying it to a benchmark image dataset.
Based on our framework, we propose a novel way to quantify the error in contemporary superconducting quantum computers.
arXiv Detail & Related papers (2023-10-13T14:17:25Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution [2.1146241717926664]
We show that the Wasserstein GAN, constrained to left-invertible push-forward maps, generates distributions that avoid replication and significantly deviate from the empirical distribution.
Our most important contribution provides a finite-sample lower bound on the Wasserstein-1 distance between the generative distribution and the empirical one.
We also establish a finite-sample upper bound on the distance between the generative distribution and the true data-generating one.
arXiv Detail & Related papers (2023-07-31T06:11:57Z) - A New Central Limit Theorem for the Augmented IPW Estimator: Variance
Inflation, Cross-Fit Covariance and Beyond [0.9172870611255595]
Cross-fit inverse probability weighting (AIPW) with cross-fitting is a popular choice in practice.
We study this cross-fit AIPW estimator under well-specified outcome regression and propensity score models in a high-dimensional regime.
Our work utilizes a novel interplay between three distinct tools--approximate message passing theory, the theory of deterministic equivalents, and the leave-one-out approach.
arXiv Detail & Related papers (2022-05-20T14:17:53Z) - Variance Minimization in the Wasserstein Space for Invariant Causal
Prediction [72.13445677280792]
In this work, we show that the approach taken in ICP may be reformulated as a series of nonparametric tests that scales linearly in the number of predictors.
Each of these tests relies on the minimization of a novel loss function that is derived from tools in optimal transport theory.
We prove under mild assumptions that our method is able to recover the set of identifiable direct causes, and we demonstrate in our experiments that it is competitive with other benchmark causal discovery algorithms.
arXiv Detail & Related papers (2021-10-13T22:30:47Z) - Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Level, and Frontier Integral [58.434753643798224]
Divergence frontiers have been proposed as an evaluation framework for generative models.
We establish non-asymptotic bounds on the sample complexity of the plug-in estimator of divergence frontiers.
We also augment the divergence frontier framework by investigating the statistical performance of smoothed distribution estimators.
arXiv Detail & Related papers (2021-06-15T06:26:25Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.