論文の概要: Natural Language Interaction to Facilitate Mental Models of Remote
Robots
- arxiv url: http://arxiv.org/abs/2003.05870v1
- Date: Thu, 12 Mar 2020 16:03:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 15:25:06.732697
- Title: Natural Language Interaction to Facilitate Mental Models of Remote
Robots
- Title(参考訳): 遠隔ロボットのメンタルモデルを促進する自然言語対話
- Authors: Francisco J. Chiyah Garcia, Jos\'e Lopes, Helen Hastie
- Abstract要約: ロボットには、ロボットができることとできないことを明確にした精神モデルが必要です。
本稿では,遠隔ロボットの機能を理解する上で,仲介者として機能する対話型アシスタントとのインタラクションが有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasingly complex and autonomous robots are being deployed in real-world
environments with far-reaching consequences. High-stakes scenarios, such as
emergency response or offshore energy platform and nuclear inspections, require
robot operators to have clear mental models of what the robots can and can't
do. However, operators are often not the original designers of the robots and
thus, they do not necessarily have such clear mental models, especially if they
are novice users. This lack of mental model clarity can slow adoption and can
negatively impact human-machine teaming. We propose that interaction with a
conversational assistant, who acts as a mediator, can help the user with
understanding the functionality of remote robots and increase transparency
through natural language explanations, as well as facilitate the evaluation of
operators' mental models.
- Abstract(参考訳): ますます複雑で自律的なロボットが、現実世界の環境に配備されていく。
緊急対応や沖合のエネルギープラットフォームや核検査といった高リスクシナリオでは、ロボットオペレーターはロボットができることとできないことを明確にしたメンタルモデルを持つ必要があります。
しかし、オペレーターはロボットのオリジナルの設計者ではないことが多いため、初心者である場合、必ずしもそのような明確な精神モデルを持っていない。
メンタルモデルが明確でないことは採用を遅らせ、人間と機械のコラボレーションに悪影響を及ぼす可能性がある。
本稿では,遠隔ロボットの機能を理解し,自然言語による説明を通じて透明性を高めるとともに,操作者のメンタルモデルの評価を容易にするために,仲介者として機能する対話アシスタントとのインタラクションを提案する。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
我々は,ロボットを視覚のみからモデル化し,制御することを自律的に学習するアーキテクチャであるNeural Jacobian Fieldsを紹介する。
提案手法は,正確なクローズドループ制御を実現し,各ロボットの因果動的構造を復元する。
論文 参考訳(メタデータ) (2024-07-11T17:55:49Z) - LLM Granularity for On-the-Fly Robot Control [3.5015824313818578]
視覚が信頼できない、あるいは利用できない状況では、ロボットを制御するための言語のみに頼ることができるのか?
本研究は,(1)様々な粒度の言語プロンプトに対する補助ロボットの応答を評価し,(2)ロボットのオンザフライ制御の必要性と実現可能性を探る。
論文 参考訳(メタデータ) (2024-06-20T18:17:48Z) - Singing the Body Electric: The Impact of Robot Embodiment on User
Expectations [7.408858358967414]
ユーザーはロボットのメンタルモデルを開発し、ロボットとどのような相互作用ができるかを概念化する。
概念化はしばしばロボットとの相互作用の前に形成され、ロボットの物理的デザインを観察することのみに基づいている。
本研究では,ロボットが持つ社会的・身体的能力に対して,ユーザがどのような期待を抱くかを予測するために,ロボットのマルチモーダル機能を利用することを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:42:48Z) - Exploring Large Language Models to Facilitate Variable Autonomy for Human-Robot Teaming [4.779196219827508]
本稿では,VR(Unity Virtual Reality)設定に基づく,GPTを利用したマルチロボットテストベッド環境のための新しいフレームワークを提案する。
このシステムにより、ユーザーは自然言語でロボットエージェントと対話でき、それぞれが個々のGPTコアで動く。
12人の参加者によるユーザスタディでは、GPT-4の有効性と、さらに重要なのは、マルチロボット環境で自然言語で会話する機会を与えられる際のユーザ戦略について検討している。
論文 参考訳(メタデータ) (2023-12-12T12:26:48Z) - What Matters to You? Towards Visual Representation Alignment for Robot
Learning [81.30964736676103]
人のために運用する場合、ロボットはエンドユーザーの好みに合わせて報酬を最適化する必要がある。
本稿では、視覚的表現アライメント問題を解決するためのRAPL(Representation-Aligned Preference-based Learning)を提案する。
論文 参考訳(メタデータ) (2023-10-11T23:04:07Z) - Open-World Object Manipulation using Pre-trained Vision-Language Models [72.87306011500084]
ロボットが人からの指示に従うためには、人間の語彙の豊かな意味情報を繋げなければならない。
我々は、事前学習された視覚言語モデルを利用して、オブジェクト識別情報を抽出するシンプルなアプローチを開発する。
実際の移動マニピュレータにおける様々な実験において、MOOはゼロショットを様々な新しいオブジェクトカテゴリや環境に一般化する。
論文 参考訳(メタデータ) (2023-03-02T01:55:10Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - Technical Opinion: From Animal Behaviour to Autonomous Robots [1.0660480034605242]
本稿では,動物行動の観点からロボット自律性について概観する。
最先端の技術を調べ、研究の方向性を示唆する。
論文 参考訳(メタデータ) (2020-12-11T16:57:28Z) - Integrating Intrinsic and Extrinsic Explainability: The Relevance of
Understanding Neural Networks for Human-Robot Interaction [19.844084722919764]
説明可能な人工知能(XAI)は、インテリジェントで自律的なシステムの信頼と受容を促進するのに役立つ。
NICOは、オープンソースのヒューマノイドロボットプラットフォームであり、ロボット自身による本質的な説明と環境によって提供される外生的な説明の相互作用によって、効率的なロボット動作を実現する方法について紹介されている。
論文 参考訳(メタデータ) (2020-10-09T14:28:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。