論文の概要: Technical Opinion: From Animal Behaviour to Autonomous Robots
- arxiv url: http://arxiv.org/abs/2012.06492v1
- Date: Fri, 11 Dec 2020 16:57:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 05:42:53.154952
- Title: Technical Opinion: From Animal Behaviour to Autonomous Robots
- Title(参考訳): 技術的意見:動物行動から自律ロボットへ
- Authors: Chinedu Pascal Ezenkwu and Andrew Starkey
- Abstract要約: 本稿では,動物行動の観点からロボット自律性について概観する。
最先端の技術を調べ、研究の方向性を示唆する。
- 参考スコア(独自算出の注目度): 1.0660480034605242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rising applications of robots in unstructured real-world
environments, roboticists are increasingly concerned with the problems posed by
the complexity of such environments. One solution to these problems is robot
autonomy. Since nature has already solved the problem of autonomy it can be a
suitable model for developing autonomous robots. This paper presents a concise
review on robot autonomy from the perspective of animal behaviour. It examines
some state-of-the-art techniques as well as suggesting possible research
directions.
- Abstract(参考訳): ロボットの非構造的現実環境への応用の高まりに伴い、ロボット学者はそのような環境の複雑さに起因する問題にますます関心を寄せている。
この問題に対する1つの解決策は、ロボットの自律性である。
自然が既に自律性の問題を解決しているので、自律ロボットの開発に適したモデルになり得る。
本稿では,動物行動の観点からロボット自律性に関する簡潔なレビューを行う。
最先端の技術を調べ、研究の方向性を示唆する。
関連論文リスト
- Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
我々は,ロボットを視覚のみからモデル化し,制御することを自律的に学習するアーキテクチャであるNeural Jacobian Fieldsを紹介する。
提案手法は,正確なクローズドループ制御を実現し,各ロボットの因果動的構造を復元する。
論文 参考訳(メタデータ) (2024-07-11T17:55:49Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - Towards Long-term Autonomy: A Perspective from Robot Learning [13.38855419752331]
サービスロボットは、人間の介入なしに長期にわたって自律的に動作できることが期待されている。
本稿では,ロボット学習の観点から長期的自律性の問題について考察する。
論文 参考訳(メタデータ) (2022-12-24T18:32:14Z) - A Capability and Skill Model for Heterogeneous Autonomous Robots [69.50862982117127]
機能モデリングは、異なるマシンが提供する機能を意味的にモデル化するための有望なアプローチと考えられている。
この貢献は、製造から自律ロボットの分野への能力モデルの適用と拡張の仕方について考察する。
論文 参考訳(メタデータ) (2022-09-22T10:13:55Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - An Embarrassingly Pragmatic Introduction to Vision-based Autonomous
Robots [0.0]
視覚情報のみを用いてシーンを理解できる小型の自律走行車を開発した。
我々は、ロボットと自動運転の現在の状況と、この分野で見られる技術的、倫理的制約について論じる。
論文 参考訳(メタデータ) (2021-11-15T01:31:28Z) - Design and Development of Autonomous Delivery Robot [0.16863755729554888]
私たちは、VNITキャンパス内のパッケージを人間の通信なしで配信する自律移動ロボットプラットフォームを提示します。
この論文では、屋外環境で働く自律ロボットのパイプライン全体について説明する。
論文 参考訳(メタデータ) (2021-03-16T17:57:44Z) - OpenBot: Turning Smartphones into Robots [95.94432031144716]
現在のロボットは高価か、感覚豊かさ、計算能力、通信能力に重大な妥協をもたらす。
我々はスマートフォンを活用して、センサースイート、強力な計算能力、最先端通信チャネル、繁栄するソフトウェアエコシステムへのアクセスなどを備えたロボットを装備することを提案する。
われわれは50ドルの小型電気自動車を設計し、標準のAndroidスマートフォンのロボットボディとして機能する。
論文 参考訳(メタデータ) (2020-08-24T18:04:50Z) - Natural Language Interaction to Facilitate Mental Models of Remote
Robots [0.0]
ロボットには、ロボットができることとできないことを明確にした精神モデルが必要です。
本稿では,遠隔ロボットの機能を理解する上で,仲介者として機能する対話型アシスタントとのインタラクションが有効であることを示す。
論文 参考訳(メタデータ) (2020-03-12T16:03:27Z) - A Survey of Behavior Learning Applications in Robotics -- State of the Art and Perspectives [44.45953630612019]
最近の多くの領域での機械学習の成功は圧倒的に多い。
実際のロボットで学んだり使ったりした行動について、幅広い概要を述べます。
論文 参考訳(メタデータ) (2019-06-05T07:54:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。