論文の概要: Interaction Graphs for Object Importance Estimation in On-road Driving
Videos
- arxiv url: http://arxiv.org/abs/2003.06045v1
- Date: Thu, 12 Mar 2020 22:28:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 15:45:53.031154
- Title: Interaction Graphs for Object Importance Estimation in On-road Driving
Videos
- Title(参考訳): 道路走行ビデオにおける物体重要度推定のためのインタラクショングラフ
- Authors: Zehua Zhang, Ashish Tawari, Sujitha Martin, David Crandall
- Abstract要約: ドライバーのリアルタイム意思決定における各オブジェクトの重要性を推定する学習は、人間の運転行動をよりよく理解するのに役立ちます。
相互作用グラフを用いたオブジェクト重要度推定のための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 9.344790309080283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A vehicle driving along the road is surrounded by many objects, but only a
small subset of them influence the driver's decisions and actions. Learning to
estimate the importance of each object on the driver's real-time
decision-making may help better understand human driving behavior and lead to
more reliable autonomous driving systems. Solving this problem requires models
that understand the interactions between the ego-vehicle and the surrounding
objects. However, interactions among other objects in the scene can potentially
also be very helpful, e.g., a pedestrian beginning to cross the road between
the ego-vehicle and the car in front will make the car in front less important.
We propose a novel framework for object importance estimation using an
interaction graph, in which the features of each object node are updated by
interacting with others through graph convolution. Experiments show that our
model outperforms state-of-the-art baselines with much less input and
pre-processing.
- Abstract(参考訳): 道路を走る車両は多数の物体に囲まれているが、運転者の判断や行動に影響を及ぼすのはごくわずかである。
ドライバのリアルタイムな意思決定における各オブジェクトの重要性を見積もる学習は、人間の運転行動の理解を深め、より信頼性の高い自動運転システムにつながる可能性がある。
この問題を解決するには、自走車と周囲の物体との相互作用を理解するモデルが必要である。
しかし、シーン内の他の物体との相互作用は、例えば、エゴ車と前方の車の間の道路を横断する歩行者が、前方の車を重要視しにくくするなど、非常に役立つ可能性がある。
本稿では,各オブジェクトノードの特徴を,グラフの畳み込みによって相互に関連付けることによって更新する,相互作用グラフを用いたオブジェクト重要度推定のための新しいフレームワークを提案する。
実験の結果,本モデルは入力処理や前処理をはるかに少なくして,最先端のベースラインを上回ることがわかった。
関連論文リスト
- GraphAD: Interaction Scene Graph for End-to-end Autonomous Driving [16.245949174447574]
我々は,エゴ車両,道路エージェント,地図要素間の相互作用をモデル化するための統合手法として,インタラクションシーングラフ(ISG)を提案する。
提案手法をnuScenesデータセット上で評価した。
論文 参考訳(メタデータ) (2024-03-28T02:22:28Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
交通事故はしばしば致命傷を負い、2023年まで5000万人以上の死者を出した。
従来の研究は、主に個々の参加者の重要性を評価し、それらを独立した存在として扱うものであった。
本稿では、重要な物体検出タスクを強化するために、運転シーン関連自己理解変換器(DRUformer)を紹介する。
論文 参考訳(メタデータ) (2023-11-11T07:26:47Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
最近の知覚システムは、センサー融合による空間理解を高めるが、しばしば完全な環境コンテキストを欠いている。
我々は,3台のカメラを統合し,人間の視野をエミュレートするフレームワークを導入し,トップダウンのバードアイビューセマンティックデータと組み合わせて文脈表現を強化する。
提案手法は, オープンループ設定において0.67mの変位誤差を達成し, nuScenesデータセットでは6.9%の精度で現在の手法を上回っている。
論文 参考訳(メタデータ) (2022-10-13T05:56:20Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
本稿では,オブジェクトの提案から潜在的意味関係を予測するグラフ畳み込みネットワークRSG-Netを提案する。
実験の結果、このネットワークはロードシーングラフデータセットに基づいてトレーニングされており、エゴ車両周辺のオブジェクト間の潜在的な意味関係を効率的に予測できることがわかった。
論文 参考訳(メタデータ) (2022-07-16T12:40:17Z) - Audiovisual Affect Assessment and Autonomous Automobiles: Applications [0.0]
このコントリビューションは、課題を予測し、ロードコンテキスト上のマルチモーダルな"オーディオプラスx"におけるモデリングに影響を与える潜在的な方法を提供することを目的としています。
技術的には、乗用車内の個人を全面的にモデル化し、信頼性の高いダイアリゼーションを行う。
結論として、自動感情分析は、最初に選択されたユースケースにおける自動運転車の適用可能性の点まで成熟した。
論文 参考訳(メタデータ) (2022-03-14T20:39:02Z) - Important Object Identification with Semi-Supervised Learning for
Autonomous Driving [37.654878298744855]
本稿では,エゴセントリック駆動シナリオにおける重要な物体識別のための新しい手法を提案する。
モデルが無制限なラベル付きデータから学習できるようにするための,半教師付き学習パイプラインを提案する。
私たちのアプローチはルールベースのベースラインよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2022-03-05T01:23:13Z) - Large Scale Interactive Motion Forecasting for Autonomous Driving : The
Waymo Open Motion Dataset [84.3946567650148]
10万枚以上のシーンが10Hzで20秒に渡り、私たちの新しいデータセットには1750kmの道路上の570時間以上のユニークなデータが含まれています。
高精度な3d自動ラベルシステムを用いて,道路エージェント毎に高品質な3dバウンディングボックスを生成する。
シングルエージェントとジョイントエージェントの相互作用運動予測モデルの両方を総合的に評価する新しいメトリクスセットを紹介します。
論文 参考訳(メタデータ) (2021-04-20T17:19:05Z) - Grounded Relational Inference: Domain Knowledge Driven Explainable Autonomous Driving [47.22329993674051]
我々は、人間のドメイン知識とモデル固有の因果関係の両方に整合した説明を生成する説明可能なモデルを開発することを目的とする。
特に、自律運転における重要なビルディングブロック、マルチエージェントインタラクションモデリングに焦点を当てる。
シミュレーションと実環境設定の両方で対話的な交通シナリオをモデル化できることを実証する。
論文 参考訳(メタデータ) (2021-02-23T19:34:32Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Studying Person-Specific Pointing and Gaze Behavior for Multimodal
Referencing of Outside Objects from a Moving Vehicle [58.720142291102135]
物体選択と参照のための自動車応用において、手指しと目視が広く研究されている。
既存の車外参照手法は静的な状況に重点を置いているが、移動車両の状況は極めて動的であり、安全性に制約がある。
本研究では,外部オブジェクトを参照するタスクにおいて,各モダリティの具体的特徴とそれら間の相互作用について検討する。
論文 参考訳(メタデータ) (2020-09-23T14:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。