論文の概要: Deep connections between learning from limited labels & physical
parameter estimation -- inspiration for regularization
- arxiv url: http://arxiv.org/abs/2003.07908v1
- Date: Tue, 17 Mar 2020 19:33:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 22:07:44.176806
- Title: Deep connections between learning from limited labels & physical
parameter estimation -- inspiration for regularization
- Title(参考訳): 限定ラベルからの学習と物理パラメータ推定との深いつながり-正規化へのインスピレーション
- Authors: Bas Peters
- Abstract要約: PDE制約最適化におけるモデルパラメータの明示的な正規化は、ネットワーク出力の正規化に変換されることを示す。
ハイパースペクトルイメージングの例は、最適正規化パラメータのクロスバリデーションと共に最小の事前情報がセグメンテーション精度を高めることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently established equivalences between differential equations and the
structure of neural networks enabled some interpretation of training of a
neural network as partial-differential-equation (PDE) constrained optimization.
We add to the previously established connections, explicit regularization that
is particularly beneficial in the case of single large-scale examples with
partial annotation. We show that explicit regularization of model parameters in
PDE constrained optimization translates to regularization of the network
output. Examination of the structure of the corresponding Lagrangian and
backpropagation algorithm do not reveal additional computational challenges. A
hyperspectral imaging example shows that minimum prior information together
with cross-validation for optimal regularization parameters boosts the
segmentation accuracy.
- Abstract(参考訳): 近年、微分方程式とニューラルネットワークの構造の等価性が確立され、ニューラルネットワークのトレーニングをPDE(Partial-differential-equation)制約付き最適化として解釈できるようになった。
以前に確立された接続、特に部分アノテーション付き大規模例では特に有益である明示的な正規化を加えます。
pde制約付き最適化におけるモデルパラメータの明示的正則化は、ネットワーク出力の正則化に変換される。
対応するラグランジアンおよびバックプロパゲーションアルゴリズムの構造の検証は、さらなる計算上の課題を明らかにしない。
ハイパースペクトルイメージングの例は、最適正規化パラメータのクロスバリデーションと共に最小の事前情報がセグメンテーション精度を高めることを示している。
関連論文リスト
- Neural Parameter Regression for Explicit Representations of PDE Solution Operators [22.355460388065964]
偏微分方程式(PDE)の解演算子を学習するための新しいフレームワークであるニューラル回帰(NPR)を導入する。
NPRは、ニューラルネットワーク(NN)パラメータを回帰するために、Physics-Informed Neural Network (PINN, Raissi et al., 2021) 技術を使用している。
このフレームワークは、新しい初期条件と境界条件に顕著な適応性を示し、高速な微調整と推論を可能にした。
論文 参考訳(メタデータ) (2024-03-19T14:30:56Z) - Function-Space Regularization in Neural Networks: A Probabilistic
Perspective [51.133793272222874]
所望の予測関数に関する情報をニューラルネットワークトレーニングに明示的にエンコードできる、モチベーションの高い正規化手法を導出できることが示される。
本手法の有効性を実証的に評価し,提案手法がほぼ完全なセマンティックシフト検出と高度に校正された予測不確実性推定に繋がることを示す。
論文 参考訳(メタデータ) (2023-12-28T17:50:56Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Neural Characteristic Activation Analysis and Geometric Parameterization for ReLU Networks [2.2713084727838115]
本稿では,個々のニューロンの特徴的活性化境界を調べることによって,ReLUネットワークのトレーニングダイナミクスを解析するための新しいアプローチを提案する。
提案手法は,コンバージェンス最適化におけるニューラルネットワークのパラメータ化と正規化において重要な不安定性を示し,高速収束を阻害し,性能を損なう。
論文 参考訳(メタデータ) (2023-05-25T10:19:13Z) - Learning Regularization Parameters of Inverse Problems via Deep Neural
Networks [0.0]
ネットワークが観察データから正規化パラメータへのマッピングを近似するように訓練される、教師付き学習アプローチを検討する。
本稿では,多種多様な正規化関数,フォワードモデル,ノイズモデルについて考察する。
ネットワークが取得する正規化パラメータは、より効率的に計算でき、より正確なソリューションにもつながります。
論文 参考訳(メタデータ) (2021-04-14T02:38:38Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
パラメーター対解写像の効率的な近似法として,Deep Neural Networks に基づく構築的アプローチを開発した。
特に, パラメタライズド・アドベクション拡散PDEについて検討し, 強輸送場の存在下で方法論を検証した。
論文 参考訳(メタデータ) (2021-03-10T17:01:42Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Iterative Surrogate Model Optimization (ISMO): An active learning
algorithm for PDE constrained optimization with deep neural networks [14.380314061763508]
反復代理モデル最適化(ISMO)と呼ばれる新しい能動学習アルゴリズムを提案する。
このアルゴリズムはディープニューラルネットワークに基づいており、その重要な特徴は、ディープニューラルネットワークと基礎となる標準最適化アルゴリズムの間のフィードバックループを通じて、トレーニングデータの反復的な選択である。
論文 参考訳(メタデータ) (2020-08-13T07:31:07Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
特徴相互作用の効率的なモデリングは、非順序的タスクに対する教師あり学習の基盤となる。
この問題を緩和するため、モデルパラメータをテンソルとして暗黙的に表現することが提案されている。
表現性を向上するため,任意の高次元特徴ベクトルに特徴写像を適用できるようにフレームワークを一般化する。
論文 参考訳(メタデータ) (2020-01-27T22:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。