論文の概要: Integrating Physiological Time Series and Clinical Notes with Deep
Learning for Improved ICU Mortality Prediction
- arxiv url: http://arxiv.org/abs/2003.11059v2
- Date: Thu, 18 Mar 2021 21:00:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 08:41:47.999223
- Title: Integrating Physiological Time Series and Clinical Notes with Deep
Learning for Improved ICU Mortality Prediction
- Title(参考訳): 深層学習と生理的時系列と臨床ノートの統合によるICU死亡予測の改善
- Authors: Satya Narayan Shukla, Benjamin M. Marlin
- Abstract要約: 本研究では,生理学的時系列データと臨床記録を統合的死亡予測モデルに統合する方法について検討する。
以上の結果より, 個別のモーダルを単独で使用した場合よりも, 予測精度が統計的に有意に向上することが示唆された。
- 参考スコア(独自算出の注目度): 21.919977518774015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intensive Care Unit Electronic Health Records (ICU EHRs) store multimodal
data about patients including clinical notes, sparse and irregularly sampled
physiological time series, lab results, and more. To date, most methods
designed to learn predictive models from ICU EHR data have focused on a single
modality. In this paper, we leverage the recently proposed
interpolation-prediction deep learning architecture(Shukla and Marlin 2019) as
a basis for exploring how physiological time series data and clinical notes can
be integrated into a unified mortality prediction model. We study both early
and late fusion approaches and demonstrate how the relative predictive value of
clinical text and physiological data change over time. Our results show that a
late fusion approach can provide a statistically significant improvement in
mortality prediction performance over using individual modalities in isolation.
- Abstract(参考訳): Intensive Care Unit Electronic Health Records (ICU EHRs)は、臨床ノート、スパース、不規則にサンプリングされた生理的時系列、実験結果などを含む患者のマルチモーダルデータを格納する。
ICU EHRデータから予測モデルを学習するために設計されたほとんどの手法は、これまで単一のモダリティに重点を置いてきた。
本稿では,最近提案された補間予測型ディープラーニングアーキテクチャ(ShuklaとMarlin 2019)を,生理的時系列データと臨床ノートを統合的死亡予測モデルに組み込むための基礎として活用する。
早期および後期の融合アプローチについて検討し,臨床テキストと生理データの相対的予測値が時間とともにどのように変化するかを示す。
以上の結果から, 晩期融合アプローチは, 個体差を分離した場合と比較して, 死亡予測性能を統計的に有意に向上できることが示唆された。
関連論文リスト
- Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
ICU患者の院内死亡率(IHM)予測は、時間的介入と効率的な資源配分に重要である。
本研究は、構造化された生理データと臨床ノートをLarge Language Model(LLM)によって生成された専門家要約と統合し、IHM予測精度を向上させる。
論文 参考訳(メタデータ) (2024-11-25T16:36:38Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
ディープラーニングモデルは、意味のあるパターンを抽出する際の約束を示すが、広範囲なラベル付きデータが必要である。
本稿では,臨床測定値とノートのアライメントに着目し,自己指導型事前学習を用いた新しいアプローチを提案する。
病院内での死亡予測や表現型化などの下流タスクでは、データのごく一部がラベル付けされた設定において、ベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T21:53:40Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - ICU Mortality Prediction Using Long Short-Term Memory Networks [0.0]
我々はElectronic Health Records(EHRs)から得られた大量の時間データを解析する自動データ駆動システムを実装した。
我々は,院内死亡率とLOS(Longth of Stay)を早期に予測するために,高レベル情報を抽出する。
実世界の予測エンジン構築のための厳密な時系列測定によるLSTMモデルの効率性について実験を行った。
論文 参考訳(メタデータ) (2023-08-18T09:44:47Z) - Time Associated Meta Learning for Clinical Prediction [78.99422473394029]
本稿では,時間関連メタラーニング(TAML)手法を提案する。
タスク分割後のスパーシリティ問題に対処するため、TAMLは時間情報共有戦略を採用し、正のサンプル数を増やす。
複数の臨床データセットに対するTAMLの有効性を示す。
論文 参考訳(メタデータ) (2023-03-05T03:54:54Z) - Integrating Physiological Time Series and Clinical Notes with
Transformer for Early Prediction of Sepsis [10.791880225915255]
セプシスはICU (Intensive Care Units) の主要な死因である。
早期敗血症予測のためのマルチモーダル変圧器モデルを提案する。
ICU入院後36ドル以内の患者に対して, 生理的時系列データと臨床記録を用いて検討した。
論文 参考訳(メタデータ) (2022-03-28T03:19:03Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。