Predicting Legal Proceedings Status: Approaches Based on Sequential Text
Data
- URL: http://arxiv.org/abs/2003.11561v4
- Date: Wed, 23 Jun 2021 02:57:08 GMT
- Title: Predicting Legal Proceedings Status: Approaches Based on Sequential Text
Data
- Authors: Felipe Maia Polo, Itamar Ciochetti, Emerson Bertolo
- Abstract summary: This paper develops predictive models to classify Brazilian legal proceedings in three possible classes of status.
We combined several natural language processing (NLP) and machine learning techniques to solve the problem.
Our approaches achieved maximum accuracy of.93 and top average F1 Scores of.89 (macro) and.93 (weighted)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of this paper is to develop predictive models to classify
Brazilian legal proceedings in three possible classes of status: (i) archived
proceedings, (ii) active proceedings, and (iii) suspended proceedings. This
problem's resolution is intended to assist public and private institutions in
managing large portfolios of legal proceedings, providing gains in scale and
efficiency. In this paper, legal proceedings are made up of sequences of short
texts called "motions." We combined several natural language processing (NLP)
and machine learning techniques to solve the problem. Although working with
Portuguese NLP, which can be challenging due to lack of resources, our
approaches performed remarkably well in the classification task, achieving
maximum accuracy of .93 and top average F1 Scores of .89 (macro) and .93
(weighted). Furthermore, we could extract and interpret the patterns learned by
one of our models besides quantifying how those patterns relate to the
classification task. The interpretability step is important among machine
learning legal applications and gives us an exciting insight into how black-box
models make decisions.
Related papers
- Judgement Citation Retrieval using Contextual Similarity [0.0]
We propose a methodology that combines natural language processing (NLP) and machine learning techniques to enhance the organization and utilization of legal case descriptions.
Our methodology addresses two primary objectives: unsupervised clustering and supervised citation retrieval.
Our methodology achieved an impressive accuracy rate of 90.9%.
arXiv Detail & Related papers (2024-05-28T04:22:28Z) - Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
This paper introduces a novel dataset tailored for classification of statements made during police interviews, prior to court proceedings.
We introduce a fine-tuned DistilBERT model that achieves state-of-the-art performance in distinguishing truthful from deceptive statements.
We also present an XAI interface that empowers both legal professionals and non-specialists to interact with and benefit from our system.
arXiv Detail & Related papers (2024-05-17T11:22:27Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Auditing the Use of Language Models to Guide Hiring Decisions [2.949890760187898]
Regulatory efforts to protect against algorithmic bias have taken on increased urgency with rapid advances in large language models.
Current regulations -- as well as the scientific literature -- provide little guidance on how to conduct these assessments.
Here we propose and investigate one approach for auditing algorithms: correspondence experiments.
arXiv Detail & Related papers (2024-04-03T22:01:26Z) - TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale [66.01943465390548]
We introduce TriSum, a framework for distilling large language models' text summarization abilities into a compact, local model.
Our method enhances local model performance on various benchmarks.
It also improves interpretability by providing insights into the summarization rationale.
arXiv Detail & Related papers (2024-03-15T14:36:38Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
Supervised fine-tuning (SFT), supervised instruction tuning (SIT) and in-context learning (ICL) are three alternative, de facto standard approaches to few-shot learning.
We present an extensive and systematic comparison of the three approaches, testing them on 6 high- and low-resource languages, three different NLU tasks, and a myriad of language and domain setups.
Our observations show that supervised instruction tuning has the best trade-off between performance and resource requirements.
arXiv Detail & Related papers (2024-03-04T10:48:13Z) - Modeling Legal Reasoning: LM Annotation at the Edge of Human Agreement [3.537369004801589]
We study the classification of legal reasoning according to jurisprudential philosophy.
We use a novel dataset of historical United States Supreme Court opinions annotated by a team of domain experts.
We find that generative models perform poorly when given instructions equal to the instructions presented to human annotators.
arXiv Detail & Related papers (2023-10-27T19:27:59Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks.
We propose a hierarchical generation scheme to encourage a more structural generation of chain-of-thought steps.
Our approach requires a negligible increase in trainable parameters (0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme.
arXiv Detail & Related papers (2023-10-09T13:29:37Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Large Language Models in the Workplace: A Case Study on Prompt
Engineering for Job Type Classification [58.720142291102135]
This case study investigates the task of job classification in a real-world setting.
The goal is to determine whether an English-language job posting is appropriate for a graduate or entry-level position.
arXiv Detail & Related papers (2023-03-13T14:09:53Z) - Analysing similarities between legal court documents using natural
language processing approaches based on Transformers [0.0]
This work targets the problem of detecting the degree of similarity between judicial documents that can be achieved in the inference group.
It applies six NLP techniques based on the transformers architecture to a case study of legal proceedings in the Brazilian judicial system.
arXiv Detail & Related papers (2022-04-14T18:25:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.