Quantum metrology with optomechanical systems in the nonlinear regime
- URL: http://arxiv.org/abs/2003.11656v1
- Date: Wed, 25 Mar 2020 21:53:03 GMT
- Title: Quantum metrology with optomechanical systems in the nonlinear regime
- Authors: Sofia Qvarfort
- Abstract summary: This thesis focuses on the description and application of nonlinear cavity optomechanical systems.
We derive a general expression of the quantum Fisher information given the extended optomechanical Hamiltonian.
Our results suggest that optomechanical systems could, in principle, be used as powerful quantum sensors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This thesis focuses on the mathematical description and application of
nonlinear cavity optomechanical systems. The first part is concerned with
solving the dynamics of the standard nonlinear optomechanical Hamiltonian with
an additional time-dependent mechanical displacement and single-mode squeezing
term. The solution is based on identifying a Lie algebra that generates the
time-evolution of the system, which reduces the problem to considering a finite
set of coupled ordinary differential equations of real functions. The second
part applies the solutions of the extended optomechanical Hamiltonian to the
study of non-Gaussianity. We compute the non-Gaussian character of an
optomechanical state as a function of the parameters in the Hamiltonian, and
investigate the interplay between the non-Gaussianity, the strength of the
nonlinear coupling and the strength of the single-mode mechanical squeezing
term. We find that the strength and form of the nonlinear coupling strongly
impacts the non-Gaussianity, and that its relationship with the squeezing term
is highly complex. The third part concerns the use of nonlinear optomechanical
systems as quantum sensors. We derive a general expression of the quantum
Fisher information given the extended optomechanical Hamiltonian and
demonstrate its applicability through three concrete examples: estimating the
strength of a nonlinear light--matter coupling, the strength of a
time-modulated mechanical displacement, and the strength of a single-mode
mechanical squeezing parameter, all of which are modulated at resonance. In the
last Chapter of the thesis, we consider the estimation of a constant
gravitational acceleration with an optomechanical system. Our results suggest
that optomechanical systems could, in principle, be used as powerful quantum
sensors.
Related papers
- Quantum algorithms to simulate quadratic classical Hamiltonians and optimal control [0.0]
We develop quantum algorithms to estimate quantities of interest in a given classical mechanical system.
We consider the problem of designing optimal control of classical systems, which can be cast as the second variation of the Lagrangian.
We give an efficient quantum algorithm to solve the Riccati differential equation well into the nonlinear regime.
arXiv Detail & Related papers (2024-04-10T18:53:22Z) - Coarse-Graining Hamiltonian Systems Using WSINDy [0.0]
We show that WSINDy can successfully identify a reduced Hamiltonian system in the presence of large intrinsics.
WSINDy naturally preserves the Hamiltonian structure by restricting to a trial basis of Hamiltonian vector fields.
We also provide a contribution to averaging theory by proving that first-order averaging at the level of vector fields preserves Hamiltonian structure in nearly-periodic Hamiltonian systems.
arXiv Detail & Related papers (2023-10-09T17:20:04Z) - Enhanced optomechanical nonlinearity through non-Markovian mechanical
noise [0.0]
We show that while the strength of the nonlinearity is generally reduced by a Markovian bath spectrum, it can be enhanced by constructing a bath with a highly non-Markovian structure.
The results have potential implications for future optomechanical experiments which seek to achieve a strong optomechanical nonlinearity.
arXiv Detail & Related papers (2023-08-02T12:54:01Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Dissipative optomechanical preparation of non-Gaussian mechanical
entanglement [0.0]
This work proposes an on-demand scheme to engineer phononic non-Gaussian bipartite entanglement in the nonlinear regime by exploiting cavity dissipation.
We show that our scheme is robust in the presence of decoherence and temperature within state-of-the-art optomechanics.
arXiv Detail & Related papers (2021-12-20T10:09:18Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Stoquasticity in circuit QED [78.980148137396]
We show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems.
We corroborate the recent finding that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits.
arXiv Detail & Related papers (2020-11-02T16:41:28Z) - Frequency-resolved photon correlations in cavity optomechanics [58.720142291102135]
We analyze the frequency-resolved correlations of the photons being emitted from an optomechanical system.
We discuss how the time-delayed correlations can reveal information about the dynamics of the system.
This enriched understanding of the system can trigger new experiments to probe nonlinear phenomena in optomechanics.
arXiv Detail & Related papers (2020-09-14T06:17:36Z) - Optimal estimation of time-dependent gravitational fields with quantum
optomechanical systems [0.0]
We study the fundamental sensitivity that can be achieved with an ideal optomechanical system in the nonlinear regime.
We specifically apply our results to the measurement of gravitational fields from small oscillating masses.
arXiv Detail & Related papers (2020-08-14T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.