論文の概要: On the role of surrogates in the efficient estimation of treatment effects with limited outcome data
- arxiv url: http://arxiv.org/abs/2003.12408v4
- Date: Mon, 2 Sep 2024 12:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 07:35:31.125676
- Title: On the role of surrogates in the efficient estimation of treatment effects with limited outcome data
- Title(参考訳): 限られた結果データを用いた治療効果の効率的な評価におけるサロゲートの役割について
- Authors: Nathan Kallus, Xiaojie Mao,
- Abstract要約: 一次利害関係にない結果のみを代理する単位にデータを組み込むことは、ATE推定の精度を高めることができる。
我々は,これらの効率向上を実現するために,ロバストなATE推定と推論手法を開発した。
- 参考スコア(独自算出の注目度): 43.17788100119767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many experimental and observational studies, the outcome of interest is often difficult or expensive to observe, reducing effective sample sizes for estimating average treatment effects (ATEs) even when identifiable. We study how incorporating data on units for which only surrogate outcomes not of primary interest are observed can increase the precision of ATE estimation. We refrain from imposing stringent surrogacy conditions, which permit surrogates as perfect replacements for the target outcome. Instead, we supplement the available, albeit limited, observations of the target outcome with abundant observations of surrogate outcomes, without any assumptions beyond unconfounded treatment assignment and missingness and corresponding overlap conditions. To quantify the potential gains, we derive the difference in efficiency bounds on ATE estimation with and without surrogates, both when an overwhelming or comparable number of units have missing outcomes. We develop robust ATE estimation and inference methods that realize these efficiency gains. We empirically demonstrate the gains by studying long-term-earning effects of job training.
- Abstract(参考訳): 多くの実験的、観察的な研究において、関心の結果を観察することはしばしば困難またはコストがかかり、平均治療効果(ATE)を推定する有効なサンプルサイズが減少する。
一次利害関係にない結果のみを代理する単位にデータを組み込むことは、ATE推定の精度を高めることができる。
我々は、厳格な代理条件を課すことを控え、サロゲートを目標とする結果の完全な代替として許容する。
代わりに、未確立の処理の割り当てや欠如、それに対応する重複条件以外の仮定を伴わずに、サロゲート結果の豊富な観察によって、対象とする結果の可利用かつ限定的な観察を補う。
ポテンシャルゲインを定量化するために、圧倒的な単位数と同等数の単位が欠落した場合に、ATE推定と代理無しの効率境界の差を導出する。
我々は,これらの効率向上を実現するために,ロバストなATE推定と推論手法を開発した。
職種訓練の長期学習効果を実証的に実証した。
関連論文リスト
- Continuous Treatment Effects with Surrogate Outcomes [12.548638259932915]
持続的治療効果の予測におけるサロゲートの役割について検討した。
そこで本研究では,サロゲートを効率的に分析に組み込む2つの頑健な手法を提案する。
論文 参考訳(メタデータ) (2024-01-31T20:50:18Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
平均的な治療効果は社会福祉の変化を測定するため、たとえ肯定的であっても、人口の約10%に悪影響を及ぼすリスクがある。
本稿では,ICT分布のリスク条件値(CVaR)として定式化されたこの重要なリスク尺度をどう評価するかを検討する。
いくつかの境界は、複素CATE関数を単一の計量に要約したものと解釈することもでき、有界であることとは無関係に興味を持つ。
論文 参考訳(メタデータ) (2022-01-15T17:21:26Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
もっとも単純な設定であっても、無知性仮定に基づく推定は誤解を招く可能性があることを示す。
異種処理効果評価のための機械学習ベンチマークデータセットを2つ検討した。
ベンチマークデータセットの固有の特性が、他のものよりもいくつかのアルゴリズムを好んでいる点を強調します。
論文 参考訳(メタデータ) (2021-07-28T13:21:27Z) - Confounding Feature Acquisition for Causal Effect Estimation [6.174721516017138]
我々は,この課題を因果推論のための特徴獲得の問題として捉えている。
我々のゴールは、効率的な平均治療効果の推定につながるサンプルにおいて、行方不明の共同創業者の固定的で既知のサブセットの取得値を優先順位付けすることです。
論文 参考訳(メタデータ) (2020-11-17T16:28:43Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Counterfactual Propagation for Semi-Supervised Individual Treatment
Effect Estimation [21.285425135761795]
個別治療効果(英: individual treatment effect、ITE)とは、特定の標的に特定の行動をとる結果の期待された改善を示す。
本研究では、より容易に利用可能な未ラベルのインスタンスを利用する半教師付きITE推定問題について考察する。
本稿では,最初の半教師付きITT推定法である反実伝搬法を提案する。
論文 参考訳(メタデータ) (2020-05-11T13:32:38Z) - Causal Inference With Selectively Deconfounded Data [22.624714904663424]
我々は、平均治療効果(ATE)を推定する際に、大規模な統合された観測データセット(共同設立者なし)と小さな非統合された観測データセット(共同設立者明らかに)を組み込むことの利点を検討する。
理論的には, 待ち行列を所望の精度で推定するために必要なデコンストラクタデータの量を大幅に削減できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-25T18:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。