Large-scale quantum hybrid solution for linear systems of equations
- URL: http://arxiv.org/abs/2003.12770v3
- Date: Wed, 30 Jun 2021 14:50:17 GMT
- Title: Large-scale quantum hybrid solution for linear systems of equations
- Authors: M. R. Perelshtein, A. I. Pakhomchik, A. A. Melnikov, A. A. Novikov, A.
Glatz, G. S. Paraoanu, V. M. Vinokur, G. B. Lesovik
- Abstract summary: We introduce and implement a hybrid quantum algorithm for solving linear systems of equations with exponential speedup.
We solve experimentally a $217$-dimensional problem on superconducting IBMQ devices, a record for linear system solution on quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art noisy intermediate-scale quantum devices (NISQ), although
imperfect, enable computational tasks that are manifestly beyond the
capabilities of modern classical supercomputers. However, present quantum
computations are restricted to exploring specific simplified protocols, whereas
the implementation of full-scale quantum algorithms aimed at solving concrete
large scale problems arising in data analysis and numerical modelling remains a
challenge. Here we introduce and implement a hybrid quantum algorithm for
solving linear systems of equations with exponential speedup, utilizing quantum
phase estimation, one of the exemplary core protocols for quantum computing. We
introduce theoretically classes of linear systems that are suitable for current
generation quantum machines and solve experimentally a $2^{17}$-dimensional
problem on superconducting IBMQ devices, a record for linear system solution on
quantum computers. The considered large-scale algorithm shows superiority over
conventional solutions, demonstrates advantages of quantum data processing via
phase estimation and holds high promise for meeting practically relevant
challenges.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Realistic Runtime Analysis for Quantum Simplex Computation [0.4407851469168588]
We present a quantum analog for classical runtime analysis when solving real-world instances of important optimization problems.
We show that a practical quantum advantage for realistic problem sizes would require quantum gate operation times that are considerably below current physical limitations.
arXiv Detail & Related papers (2023-11-16T16:11:44Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
We introduce a quantum solver of contracted eigenvalue equations, the quantum analogue of classical methods for the energies.
We demonstrate the algorithm though computations on both a quantum simulator and two IBM quantum processing units.
arXiv Detail & Related papers (2020-04-23T18:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.