SIN:Superpixel Interpolation Network
- URL: http://arxiv.org/abs/2110.08702v1
- Date: Sun, 17 Oct 2021 02:21:11 GMT
- Title: SIN:Superpixel Interpolation Network
- Authors: Qing Yuan, Songfeng Lu, Yan Huang, Wuxin Sha
- Abstract summary: Traditional algorithms and deep learning-based algorithms are two main streams in superpixel segmentation.
In this paper, we propose a deep learning-based superpixel segmentation algorithm SIN which can be integrated with downstream tasks in an end-to-end way.
- Score: 9.046310874823002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superpixels have been widely used in computer vision tasks due to their
representational and computational efficiency. Meanwhile, deep learning and
end-to-end framework have made great progress in various fields including
computer vision. However, existing superpixel algorithms cannot be integrated
into subsequent tasks in an end-to-end way. Traditional algorithms and deep
learning-based algorithms are two main streams in superpixel segmentation. The
former is non-differentiable and the latter needs a non-differentiable
post-processing step to enforce connectivity, which constraints the integration
of superpixels and downstream tasks. In this paper, we propose a deep
learning-based superpixel segmentation algorithm SIN which can be integrated
with downstream tasks in an end-to-end way. Owing to some downstream tasks such
as visual tracking require real-time speed, the speed of generating superpixels
is also important. To remove the post-processing step, our algorithm enforces
spatial connectivity from the start. Superpixels are initialized by sampled
pixels and other pixels are assigned to superpixels through multiple updating
steps. Each step consists of a horizontal and a vertical interpolation, which
is the key to enforcing spatial connectivity. Multi-layer outputs of a fully
convolutional network are utilized to predict association scores for
interpolations. Experimental results show that our approach runs at about 80fps
and performs favorably against state-of-the-art methods. Furthermore, we design
a simple but effective loss function which reduces much training time. The
improvements of superpixel-based tasks demonstrate the effectiveness of our
algorithm. We hope SIN will be integrated into downstream tasks in an
end-to-end way and benefit the superpixel-based community. Code is available
at: \href{https://github.com/yuanqqq/SIN}{https://github.com/yuanqqq/SIN}.
Related papers
- Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - Superpixel Transformers for Efficient Semantic Segmentation [32.537400525407186]
We propose a solution by leveraging the idea of superpixels, an over-segmentation of the image, and applying them with a modern transformer framework.
Our method achieves state-of-the-art performance in semantic segmentation due to the rich superpixel features generated by the global self-attention mechanism.
arXiv Detail & Related papers (2023-09-28T23:09:30Z) - Superpixels algorithms through network community detection [0.0]
Community detection is a powerful tool from complex networks analysis that finds applications in various research areas.
Superpixels aim at representing the image at a smaller level while preserving as much as possible original information.
We study the efficiency of superpixels computed by state-of-the-art community detection algorithms on a 4-connected pixel graph.
arXiv Detail & Related papers (2023-08-27T13:13:28Z) - Efficient Multiscale Object-based Superpixel Framework [62.48475585798724]
We propose a novel superpixel framework, named Superpixels through Iterative CLEarcutting (SICLE)
SICLE exploits object information being able to generate a multiscale segmentation on-the-fly.
It generalizes recent superpixel methods, surpassing them and other state-of-the-art approaches in efficiency and effectiveness according to multiple delineation metrics.
arXiv Detail & Related papers (2022-04-07T15:59:38Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) has several applications in image analysis.
Deep-learning-based SOD methods are among the most effective, but they may miss foreground parts with similar colors.
We introduce a post-processing method, named textitSaliency Enhancement over Superpixel Similarity (SESS)
We demonstrate that SESS can consistently and considerably improve the results of three deep-learning-based SOD methods on five image datasets.
arXiv Detail & Related papers (2021-12-01T17:22:54Z) - Generating Superpixels for High-resolution Images with Decoupled Patch
Calibration [82.21559299694555]
Patch Networks (PCNet) is designed to efficiently and accurately implement high-resolution superpixel segmentation.
DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries.
In particular, DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries.
arXiv Detail & Related papers (2021-08-19T10:33:05Z) - HERS Superpixels: Deep Affinity Learning for Hierarchical Entropy Rate
Segmentation [0.0]
We propose a two-stage graph-based framework for superpixel segmentation.
In the first stage, we introduce an efficient Deep Affinity Learning network that learns pairwise pixel affinities.
In the second stage, we propose a highly efficient superpixel method called Hierarchical Entropy Rate (HERS)
arXiv Detail & Related papers (2021-06-07T16:20:04Z) - Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks [11.696069523681178]
We propose a way to implicitly integrate a superpixel scheme into CNNs.
Our proposed method hierarchically groups pixels at downsampling layers and generates superpixels.
We evaluate our method on several tasks such as semantic segmentation, superpixel segmentation, and monocular depth estimation.
arXiv Detail & Related papers (2021-03-05T02:20:26Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
We propose a novel textbfAssociation textbfImplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids.
Our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
arXiv Detail & Related papers (2021-01-26T10:40:13Z) - Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised
Visual Representation Learning [60.75687261314962]
We introduce pixel-level pretext tasks for learning dense feature representations.
A pixel-to-propagation consistency task produces better results than state-of-the-art approaches.
Results demonstrate the strong potential of defining pretext tasks at the pixel level.
arXiv Detail & Related papers (2020-11-19T18:59:45Z) - Superpixel Segmentation with Fully Convolutional Networks [32.878045921919714]
We present a novel method that employs a simple fully convolutional network to predict superpixels on a regular image grid.
Experimental results on benchmark datasets show that our method achieves state-of-the-art superpixel segmentation performance.
We modify a popular network architecture for stereo matching to simultaneously predict superpixels and disparities.
arXiv Detail & Related papers (2020-03-29T02:42:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.