論文の概要: Languages in Multilingual Speech Foundation Models Align Both Phonetically and Semantically
- arxiv url: http://arxiv.org/abs/2505.19606v1
- Date: Mon, 26 May 2025 07:21:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.238649
- Title: Languages in Multilingual Speech Foundation Models Align Both Phonetically and Semantically
- Title(参考訳): 多言語音声基礎モデルにおける言語は音声的・意味的に相違する
- Authors: Ryan Soh-Eun Shim, Domenico De Cristofaro, Chengzhi Martin Hu, Alessandro Vietti, Barbara Plank,
- Abstract要約: 事前訓練された言語モデル(LM)における言語間アライメントは、テキストベースのLMの効率的な転送を可能にしている。
テキストに基づく言語間アライメントの発見と手法が音声に適用されるかどうかについては、未解決のままである。
- 参考スコア(独自算出の注目度): 58.019484208091534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-lingual alignment in pretrained language models (LMs) has enabled efficient transfer in text-based LMs. Such an alignment has also been observed in speech foundation models. However, it remains an open question whether findings and methods from text-based cross-lingual alignment apply to speech. Building on prior work on spoken translation retrieval, we perform pronunciation-controlled experiments to observe if cross-lingual alignment can indeed occur in such models on a semantic basis, instead of relying on phonetic similarities. Our findings indicate that even in the absence of phonetic cues, spoken translation retrieval accuracy remains relatively stable. We follow up with a controlled experiment on a word-level dataset of cross-lingual synonyms and near-homophones, confirming the existence of both phonetic and semantic knowledge in the encoder. Finally, we qualitatively examine the transcriptions produced by early exiting the encoder, where we observe that speech translation produces semantic errors that are characterized by phonetic similarities to corresponding words in the source language. We apply this insight from early exiting to speech recognition in seven low-resource languages unsupported by the Whisper model, and achieve improved accuracy in all languages examined, particularly for languages with transparent orthographies.
- Abstract(参考訳): 事前訓練された言語モデル(LM)における言語間アライメントは、テキストベースのLMの効率的な転送を可能にしている。
このようなアライメントは、音声基礎モデルでも観察されている。
しかし、テキストベースの言語間アライメントによる発見や手法が音声に当てはまるかどうかには疑問が残る。
音声翻訳検索の先行研究に基づいて,音韻的類似性に頼るのではなく,言語間アライメントが意味論的に実現可能かどうかを,発音制御実験により観察する。
以上の結果から,音声翻訳の精度は比較的安定していることが明らかとなった。
我々は,言語間同義語と近傍ホモフォンの単語レベルデータセットの制御実験を行い,エンコーダにおける音声的知識と意味的知識の両方の存在を確認した。
最後に,エンコーダの早期終了による書き起こしを質的に検討し,音声翻訳がソース言語の対応する単語と音声的類似性によって特徴付けられる意味的誤りを生じるのを観察する。
我々は,Whisperモデルが支持する7つの低リソース言語における早期終了から音声認識まで,この知見を適用し,特に透明な正書法を持つ言語において,検討されたすべての言語において精度の向上を実現している。
関連論文リスト
- Cross-Lingual Transfer Learning for Speech Translation [7.802021866251242]
本稿では,制限データを用いた音声基礎モデルの音声翻訳機能の拡張について検討する。
Whisperは、音声認識と英訳に強い性能を持つ音声基礎モデルであり、その例として用いられる。
音声から音声への検索を用いて,エンコーダが生成した音声表現を分析し,異なる言語からの発話を共有意味空間にマッピングすることを示す。
論文 参考訳(メタデータ) (2024-07-01T09:51:48Z) - Investigating the Impact of Cross-lingual Acoustic-Phonetic Similarities
on Multilingual Speech Recognition [31.575930914290762]
言語間音響-音声の類似性を調べるために, 新たなデータ駆動手法を提案する。
ディープニューラルネットワークは、異なる音響モデルからの分布を直接的に同等の形式に変換するためのマッピングネットワークとして訓練されている。
モノリンガルに比べて8%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2022-07-07T15:55:41Z) - Cross-lingual Low Resource Speaker Adaptation Using Phonological
Features [2.8080708404213373]
我々は、異なる言語に共通する音韻的特徴のセットに基づいて、言語に依存しないマルチスピーカモデルを訓練する。
対象話者データの32と8の発声で、対応する文献に匹敵する高い話者類似度スコアと自然性を得る。
論文 参考訳(メタデータ) (2021-11-17T12:33:42Z) - DEEP: DEnoising Entity Pre-training for Neural Machine Translation [123.6686940355937]
機械翻訳モデルは通常、トレーニングコーパスで稀な名前付きエンティティの翻訳を貧弱に生成することが示されている。
文中の名前付きエンティティ翻訳精度を向上させるために,大量のモノリンガルデータと知識ベースを利用するDenoising Entity Pre-training法であるDEEPを提案する。
論文 参考訳(メタデータ) (2021-11-14T17:28:09Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z) - Investigating Language Impact in Bilingual Approaches for Computational
Language Documentation [28.838960956506018]
本稿では,翻訳言語の選択が後続文書作業に与える影響について検討する。
我々は56対のバイリンガルペアを作成し、低リソースの教師なし単語分割とアライメントのタスクに適用する。
この結果から,ニューラルネットワークの入力表現に手がかりを取り入れることで,翻訳品質とアライメント品質が向上することが示唆された。
論文 参考訳(メタデータ) (2020-03-30T10:30:34Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。