論文の概要: Interval Neural Networks as Instability Detectors for Image
Reconstructions
- arxiv url: http://arxiv.org/abs/2003.13471v1
- Date: Fri, 27 Mar 2020 01:34:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 04:16:44.266928
- Title: Interval Neural Networks as Instability Detectors for Image
Reconstructions
- Title(参考訳): 画像再構成のための不安定検出器としてのインターバルニューラルネットワーク
- Authors: Jan Macdonald, Maximilian M\"arz, Luis Oala and Wojciech Samek
- Abstract要約: 本研究では,画像再構成作業にディープラーニングモデルを利用する場合の不安定性の検出について検討する。
特に、最近提案されたインターバルニューラルネットワークは、再構成の不安定性を明らかにするのに非常に有効であることが示されている。
- 参考スコア(独自算出の注目度): 11.28272643576878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work investigates the detection of instabilities that may occur when
utilizing deep learning models for image reconstruction tasks. Although neural
networks often empirically outperform traditional reconstruction methods, their
usage for sensitive medical applications remains controversial. Indeed, in a
recent series of works, it has been demonstrated that deep learning approaches
are susceptible to various types of instabilities, caused for instance by
adversarial noise or out-of-distribution features. It is argued that this
phenomenon can be observed regardless of the underlying architecture and that
there is no easy remedy. Based on this insight, the present work demonstrates
on two use cases how uncertainty quantification methods can be employed as
instability detectors. In particular, it is shown that the recently proposed
Interval Neural Networks are highly effective in revealing instabilities of
reconstructions. Such an ability is crucial to ensure a safe use of deep
learning-based methods for medical image reconstruction.
- Abstract(参考訳): 本研究では,画像再構成タスクにディープラーニングモデルを利用する場合の不安定性の検出について検討する。
ニューラルネットワークは、しばしば伝統的な再建法よりも経験的に優れているが、繊細な医療用途に使用されることは議論の余地がある。
実際、近年の一連の研究において、深い学習アプローチは様々な種類の不安定性、例えば敵対的ノイズやアウト・オブ・ディストリビューション機能によって引き起こされることが示されている。
この現象は、基盤となるアーキテクチャに関係なく観察でき、簡単に修正できるものではないと論じられている。
この知見に基づいて,不確実性定量化手法を不安定検出器として活用する2つの応用例を示す。
特に,最近提案されたインターバルニューラルネットワークは,再構成の不安定性を明らかにするのに非常に有効であることが示された。
このような能力は、深層学習に基づく医療画像再構成の安全な利用を保証するために不可欠である。
関連論文リスト
- DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - A Neural-Network-Based Convex Regularizer for Inverse Problems [14.571246114579468]
画像再構成問題を解決するためのディープラーニング手法は、再構築品質を大幅に向上させた。
これらの新しい手法は信頼性と説明性に欠けることが多く、これらの欠点に対処する関心が高まっている。
本研究では,凸リッジ関数の和である正則化器を再検討することにより,この問題に対処する。
このような正規化器の勾配は、活性化関数が増加し学習可能な単一の隠蔽層を持つニューラルネットワークによってパラメータ化される。
論文 参考訳(メタデータ) (2022-11-22T18:19:10Z) - Uncertainty Quantification for Deep Unrolling-Based Computational
Imaging [0.0]
本稿では,観察モデルを再構成タスクに組み込んだ学習型画像再構成フレームワークを提案する。
提案手法は,最先端のDeep Unrolling手法に匹敵する再現性能を達成しつつ,不確実性情報を提供できることを示す。
論文 参考訳(メタデータ) (2022-07-02T00:22:49Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Reducing Textural Bias Improves Robustness of Deep Segmentation CNNs [8.736194193307451]
自然画像の最近の知見は、深いニューラルモデルは、画像分類タスクを実行する際に、テクスチャバイアスを示す可能性があることを示唆している。
本研究の目的は, 深いセグメンテーションモデルの堅牢性と伝達性を高めるために, テクスチャバイアス現象に対処する方法を検討することである。
論文 参考訳(メタデータ) (2020-11-30T18:29:53Z) - Solving Inverse Problems With Deep Neural Networks -- Robustness
Included? [3.867363075280544]
近年の研究では、複数の画像再構成タスクにおけるディープニューラルネットワークの不安定性が指摘されている。
分類における敵対的攻撃と類似して、入力領域のわずかな歪みが深刻な成果物を生じさせる可能性が示された。
本稿では、未決定の逆問題を解決するためのディープラーニングベースのアルゴリズムの堅牢性について広範な研究を行うことにより、この懸念に新たな光を当てる。
論文 参考訳(メタデータ) (2020-11-09T09:33:07Z) - Adversarial Robust Training of Deep Learning MRI Reconstruction Models [0.0]
我々は、訓練されたディープラーニング再構築ネットワークの再構築が困難である小さな合成摂動を生成するために、敵攻撃を用いる。
次に、ロバストトレーニングを使用して、これらの小さな特徴に対するネットワークの感度を高め、その再構築を促進する。
再構成ネットワークにロバストトレーニングを導入することで,偽陰性特徴率を低減できることが実験的に示された。
論文 参考訳(メタデータ) (2020-10-30T19:26:14Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。