論文の概要: Uncertainty Quantification for Deep Unrolling-Based Computational
Imaging
- arxiv url: http://arxiv.org/abs/2207.00698v1
- Date: Sat, 2 Jul 2022 00:22:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-05 16:47:32.259357
- Title: Uncertainty Quantification for Deep Unrolling-Based Computational
Imaging
- Title(参考訳): 深部Unrolling-based Computational Imagingのための不確かさ定量化
- Authors: Canberk Ekmekci, Mujdat Cetin
- Abstract要約: 本稿では,観察モデルを再構成タスクに組み込んだ学習型画像再構成フレームワークを提案する。
提案手法は,最先端のDeep Unrolling手法に匹敵する再現性能を達成しつつ,不確実性情報を提供できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep unrolling is an emerging deep learning-based image reconstruction
methodology that bridges the gap between model-based and purely deep
learning-based image reconstruction methods. Although deep unrolling methods
achieve state-of-the-art performance for imaging problems and allow the
incorporation of the observation model into the reconstruction process, they do
not provide any uncertainty information about the reconstructed image, which
severely limits their use in practice, especially for safety-critical imaging
applications. In this paper, we propose a learning-based image reconstruction
framework that incorporates the observation model into the reconstruction task
and that is capable of quantifying epistemic and aleatoric uncertainties, based
on deep unrolling and Bayesian neural networks. We demonstrate the uncertainty
characterization capability of the proposed framework on magnetic resonance
imaging and computed tomography reconstruction problems. We investigate the
characteristics of the epistemic and aleatoric uncertainty information provided
by the proposed framework to motivate future research on utilizing uncertainty
information to develop more accurate, robust, trustworthy, uncertainty-aware,
learning-based image reconstruction and analysis methods for imaging problems.
We show that the proposed framework can provide uncertainty information while
achieving comparable reconstruction performance to state-of-the-art deep
unrolling methods.
- Abstract(参考訳): Deep Unrollingは、モデルベースと純粋にディープラーニングベースの画像再構成方法のギャップを埋める、深層学習に基づく画像再構成手法である。
ディープアンロール法では画像問題に対する最先端の性能を達成し, 観察モデルの再構成プロセスへの組み入れを可能にするが, 再構成画像に関する不確実性情報を提供していないため, 特に安全・クリティカルイメージングへの応用において, 使用を厳しく制限している。
本稿では,観測モデルを再構成タスクに組み込んだ学習ベースの画像再構成フレームワークを提案する。
本稿では,磁気共鳴イメージングとCT再構成問題における提案手法の不確実性について述べる。
提案手法は,不確実性情報を活用するための将来の研究を動機付け,より正確で信頼性が高く,信頼性の高い,不確実性を認識し,学習に基づく画像再構成と画像解析手法を提案する。
提案手法は,最先端のディープアンロール法に匹敵する再構成性能を実現しつつ,不確実性情報を提供できることを示す。
関連論文リスト
- Analysis of Deep Image Prior and Exploiting Self-Guidance for Image
Reconstruction [13.277067849874756]
DIPがアンダーサンプドイメージング計測からどのように情報を回収するかを検討する。
ネットワーク重みと入力の両方を同時に最適化する自己駆動型再構築プロセスを導入する。
提案手法は,ネットワーク入力画像と再構成画像の両方の堅牢かつ安定した関節推定を可能にする,新しいデノイザ正規化項を組み込んだものである。
論文 参考訳(メタデータ) (2024-02-06T15:52:23Z) - On the Quantification of Image Reconstruction Uncertainty without
Training Data [5.057039869893053]
本稿では,深部生成モデルを用いて近似後部分布を学習する深部変分フレームワークを提案する。
フローベースモデルを用いてターゲット後部をパラメータ化し,KL(Kullback-Leibler)の発散を最小限に抑え,正確な不確実性推定を実現する。
提案手法は信頼性と高品質な画像再構成を実現し,信頼性の高い不確実性を推定する。
論文 参考訳(メタデータ) (2023-11-16T07:46:47Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
本稿では,学習画像圧縮(lic)の再構成品質を効果的に劣化させる攻撃手法を提案する。
我々は,Frobeniusノルムに基づく損失関数を導入して,元の画像と再構成された逆例との差を最大化することによって,逆例を生成する。
様々なlicモデルを用いてKodakデータセット上で実験を行った結果,有効性が確認された。
論文 参考訳(メタデータ) (2023-06-01T20:21:05Z) - Uncertainty-Aware Null Space Networks for Data-Consistent Image
Reconstruction [0.0]
近年の深層学習の進歩をもとに,最先端の再構築手法が開発されている。
医用画像などの安全クリティカルな領域で使用するためには, ネットワーク再構築は, 利用者に再構成画像を提供するだけでなく, ある程度の信頼を得る必要がある。
この研究は、入力依存のスケールマップを推定することによって、データ依存の不確実性をモデル化する逆問題に対する最初のアプローチである。
論文 参考訳(メタデータ) (2023-04-14T06:58:44Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Deep Unrolled Recovery in Sparse Biological Imaging [62.997667081978825]
ディープ・アルゴリズム・アンローリング(Deep Algorithm Unrolling)は、反復的アルゴリズムの解釈可能性と教師付きディープラーニングの性能向上を組み合わせたディープ・アーキテクチャを開発するためのモデルベースのアプローチである。
この枠組みは生体イメージングの応用に適しており、測定プロセスを記述する物理モデルが存在し、回復すべき情報がしばしば高度に構造化されている。
論文 参考訳(メタデータ) (2021-09-28T20:22:44Z) - Quantifying Sources of Uncertainty in Deep Learning-Based Image
Reconstruction [5.129343375966527]
本稿では,学習反復画像再構成におけるアレタリックおよびエピステマティック不確かさを同時に定量化する,スケーラブルで効率的なフレームワークを提案する。
本手法は,スパークビューと制限角度データの両方を用いて,従来の計算トモグラフィーのベンチマークと競合する性能を示す。
論文 参考訳(メタデータ) (2020-11-17T04:12:52Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Deep Face Super-Resolution with Iterative Collaboration between
Attentive Recovery and Landmark Estimation [92.86123832948809]
本稿では,2つの繰り返しネットワーク間の反復的協調による深層面超解像(FSR)手法を提案する。
各繰り返しステップにおいて、リカバリブランチは、ランドマークの事前の知識を利用して、高品質な画像を生成する。
新しい注意融合モジュールはランドマークマップのガイダンスを強化するために設計されている。
論文 参考訳(メタデータ) (2020-03-29T16:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。