Enhanced TEMPO algorithm for quantum path integrals with off-diagonal
system-bath coupling: applications to photonic quantum networks
- URL: http://arxiv.org/abs/2110.01334v2
- Date: Wed, 2 Feb 2022 17:14:50 GMT
- Title: Enhanced TEMPO algorithm for quantum path integrals with off-diagonal
system-bath coupling: applications to photonic quantum networks
- Authors: Marten Richter and Stephen Hughes
- Abstract summary: We extend the enhanced TEMPO algorithm for quantum path integrals using tensor networks.
We exemplify the approach on a coupled cavity system with spatially separated quantum two-state emitters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multitime system correlations functions are relevant in various areas of
physics and science, dealing with system-bath interaction including
spectroscopy and quantum optics, where many of these schemes include an
off-diagonal system bath interaction. Here we extend the enhanced TEMPO
algorithm for quantum path integrals using tensor networks [Phys. Rev. Lett.
123, 240602 (2019)] to open quantum systems with off-diagonal coupling beyond a
single two level system. We exemplify the approach on a coupled cavity
waveguide system with spatially separated quantum two-state emitters, though
many other applications in material science are possible, including entangled
photon propagation, photosynthesis spectroscopy and on-chip quantum optics with
realistic dissipation.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - A chip-scale polarization-spatial-momentum quantum SWAP gate in silicon
nanophotonics [7.963795592239752]
integrated quantum photonics increases the level of scaling complexity.
We demonstrate an efficient SWAP gate that swaps a photon's polarization qubit with its spatial-momentum qubit on a nanofabricated two-level silicon-photonics chip.
Our gate provides a pathway towards integrated quantum information processing for interconnected modular systems.
arXiv Detail & Related papers (2023-05-16T21:27:11Z) - Few-photon transport via a multimode nonlinear cavity: theory and
applications [0.0]
We study few-photon transport via a waveguide-coupled multimode optical cavity with second-order bulk nonlinearity.
Our results might lead to significant applications of quantum photonic circuits in all-optical quantum information processing and quantum network protocols.
arXiv Detail & Related papers (2022-09-08T15:28:05Z) - Demonstration of a bosonic quantum classifier with data re-uploading [0.1616312990391151]
In a single qubit system, a universal quantum classifier can be realised using the data-reuploading technique.
We propose a new quantum classifier applying this technique to bosonic systems and successfully demonstrated it using silicon optical integrated quantum circuits.
arXiv Detail & Related papers (2022-07-14T02:05:55Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Cooperative quantum phenomena in light-matter platforms [0.34376560669160383]
cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes.
This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity.
arXiv Detail & Related papers (2021-07-06T15:27:23Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.