論文の概要: Flows for simultaneous manifold learning and density estimation
- arxiv url: http://arxiv.org/abs/2003.13913v3
- Date: Fri, 13 Nov 2020 16:10:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 00:11:21.131992
- Title: Flows for simultaneous manifold learning and density estimation
- Title(参考訳): 同時多様体学習のための流れと密度推定
- Authors: Johann Brehmer and Kyle Cranmer
- Abstract要約: 多様体学習フロー(M-flow)は、多様体構造を持つデータセットをより忠実に表現する。
M-フローはデータ多様体を学習し、周囲のデータ空間の標準フローよりも優れた推論を可能にする。
- 参考スコア(独自算出の注目度): 12.451050883955071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce manifold-learning flows (M-flows), a new class of generative
models that simultaneously learn the data manifold as well as a tractable
probability density on that manifold. Combining aspects of normalizing flows,
GANs, autoencoders, and energy-based models, they have the potential to
represent datasets with a manifold structure more faithfully and provide
handles on dimensionality reduction, denoising, and out-of-distribution
detection. We argue why such models should not be trained by maximum likelihood
alone and present a new training algorithm that separates manifold and density
updates. In a range of experiments we demonstrate how M-flows learn the data
manifold and allow for better inference than standard flows in the ambient data
space.
- Abstract(参考訳): データ多様体とその多様体上の可算確率密度を同時に学習する新しい生成モデルである多様体学習フロー (m-flows) を導入する。
正規化フロー、GAN、オートエンコーダ、エネルギーベースモデルといった側面を組み合わせることで、より忠実に多様体構造を持つデータセットを表現でき、次元減少、デノイング、アウト・オブ・ディストリビューション検出の処理を提供する。
このようなモデルが最大確率だけでは訓練されない理由を議論し、多様体と密度の更新を分離する新しいトレーニングアルゴリズムを提案する。
様々な実験において、M-フローがデータ多様体をどのように学習し、環境データ空間の標準フローよりも優れた推論を可能にするかを示す。
関連論文リスト
- Fisher Flow Matching for Generative Modeling over Discrete Data [12.69975914345141]
離散データのための新しいフローマッチングモデルであるFisher-Flowを紹介する。
Fisher-Flowは、離散データ上のカテゴリー分布を考慮し、明らかに幾何学的な視点を採っている。
Fisher-Flowにより誘導される勾配流は, 前方KLの発散を低減するのに最適であることを示す。
論文 参考訳(メタデータ) (2024-05-23T15:02:11Z) - Mixed Gaussian Flow for Diverse Trajectory Prediction [78.00204650749453]
混合ガウスを将来の軌跡多様体に変換するためのフローベースモデルを提案する。
このモデルでは、多様な軌道パターンを生成する能力が向上している。
また,多様な,制御可能な,分布外のトラジェクトリを生成可能であることも実証した。
論文 参考訳(メタデータ) (2024-02-19T15:48:55Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
本稿では,任意の生成モデルの学習を指導するDiff-Instructというフレームワークを提案する。
Diff-Instructは、最先端の単一ステップ拡散モデルであることを示す。
GANモデルの精製実験により、Diff-InstructはGANモデルの事前訓練されたジェネレータを一貫して改善できることが示されている。
論文 参考訳(メタデータ) (2023-05-29T04:22:57Z) - VQ-Flows: Vector Quantized Local Normalizing Flows [2.7998963147546148]
データ多様体上の「チャートマップ」として局所正規化フローの混合を学習するための新しい統計フレームワークを導入する。
本フレームワークは, 正規化フローのシグネチャ特性を保ちながら, 最近の手法の表現性を向上し, 正確な密度評価を行う。
論文 参考訳(メタデータ) (2022-03-22T09:22:18Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) は連続正規化フロー(CNF)ファミリーにおける新しい生成モデルのクラスである
MFは、訓練中にODEソルバを介して呼び出しやバックプロパゲートを必要としない。
一般曲面からのサンプリングにおけるフローモデルの利用を初めて実演する。
論文 参考訳(メタデータ) (2021-08-18T09:00:24Z) - Discrete Denoising Flows [87.44537620217673]
分類的確率変数に対する離散的フローベースモデル(DDF)を提案する。
他の離散フローベースモデルとは対照的に、我々のモデルは勾配バイアスを導入することなく局所的に訓練することができる。
そこで本研究では, DDFs が離散フローより優れていることを示し, 対数類似度で測定した2値MNIST と Cityscapes のセグメンテーションマップをモデル化した。
論文 参考訳(メタデータ) (2021-07-24T14:47:22Z) - Tractable Density Estimation on Learned Manifolds with Conformal
Embedding Flows [0.0]
正規化フローは、単純な基底分布を複素対象分布に変換することにより、トラクタブル密度推定を提供する。
この問題を治療するための最近の試みは、正確な密度推定という、フローを正規化するという中心的な利益を損なう幾何学的な合併症を導入している。
我々は、訓練可能な共形埋め込みで標準流れを構成することが、多様体が支持するデータをモデル化する最も自然な方法であると主張する。
論文 参考訳(メタデータ) (2021-06-09T18:00:00Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。