論文の概要: Tractable Density Estimation on Learned Manifolds with Conformal
Embedding Flows
- arxiv url: http://arxiv.org/abs/2106.05275v1
- Date: Wed, 9 Jun 2021 18:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:35:50.828922
- Title: Tractable Density Estimation on Learned Manifolds with Conformal
Embedding Flows
- Title(参考訳): 共形埋め込み流れをもつ学習多様体の気道密度推定
- Authors: Brendan Leigh Ross, Jesse C. Cresswell
- Abstract要約: 正規化フローは、単純な基底分布を複素対象分布に変換することにより、トラクタブル密度推定を提供する。
この問題を治療するための最近の試みは、正確な密度推定という、フローを正規化するという中心的な利益を損なう幾何学的な合併症を導入している。
我々は、訓練可能な共形埋め込みで標準流れを構成することが、多様体が支持するデータをモデル化する最も自然な方法であると主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows are generative models that provide tractable density
estimation by transforming a simple base distribution into a complex target
distribution. However, this technique cannot directly model data supported on
an unknown low-dimensional manifold, a common occurrence in real-world domains
such as image data. Recent attempts to remedy this limitation have introduced
geometric complications that defeat a central benefit of normalizing flows:
exact density estimation. We recover this benefit with Conformal Embedding
Flows, a framework for designing flows that learn manifolds with tractable
densities. We argue that composing a standard flow with a trainable conformal
embedding is the most natural way to model manifold-supported data. To this
end, we present a series of conformal building blocks and apply them in
experiments with real-world and synthetic data to demonstrate that flows can
model manifold-supported distributions without sacrificing tractable
likelihoods.
- Abstract(参考訳): 正規化フローは、単純な基底分布を複素対象分布に変換することによって、トラクタブル密度推定を提供する生成モデルである。
しかし、この手法は、画像データのような実世界の領域でよく見られる未知の低次元多様体上でのデータを直接モデル化することはできない。
この制限を是正しようとする最近の試みは、流れの正規化の中心的な利点である正確な密度推定を打ち破る幾何学的複雑化をもたらす。
この利点は、トラクタブル密度の多様体を学習するフローを設計するためのフレームワークであるConformal Embedding Flowsを用いて回復する。
トレーニング可能な共形埋め込みで標準流れを構成することは、多様体が支持するデータをモデル化する最も自然な方法である。
そこで本論文では, 実世界および合成データを用いた実験において, 計算可能な確率を犠牲にすることなく, フローが多様体支持分布をモデル化可能であることを示す。
関連論文リスト
- Out-of-distribution detection using normalizing flows on the data
manifold [3.725042082196983]
本研究では,正規化フローを用いた多様体学習が分布外検出に及ぼす影響について検討した。
本研究では,正規化フローとして知られる確率ベースモデルの分布外検出能力を,多様体学習により向上させることを示す。
論文 参考訳(メタデータ) (2023-08-26T07:35:16Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
サンプル多様体上の畳み込みフィルタリングは連続多様体フィルタリングに収束することを示す。
本研究は,ナビゲーション制御の問題点を実証的に明らかにした。
論文 参考訳(メタデータ) (2022-11-20T19:09:50Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
正規化フロー(NF)は、複雑な実世界のデータ分布を正確にモデル化することが示されているフレキシブルな明示的な生成モデルである。
摂動分布から標本を与えられた多様体上の最も可能性の高い点を復元する最適化目的を提案する。
最後に、NFsの明示的な性質、すなわち、ログのような勾配とログのような勾配から抽出された表面正規化を利用する3次元点雲に焦点を当てる。
論文 参考訳(メタデータ) (2022-08-18T16:07:59Z) - Joint Manifold Learning and Density Estimation Using Normalizing Flows [4.939777212813711]
問題に答えるために,1ピクセルあたりのペナル化と階層的トレーニングという2つのアプローチを導入する。
そこで本稿では,変換された空間をアンタングル化することで,共同多様体学習と密度推定を行う一段階法を提案する。
その結果, 共用多様体学習と密度推定において, 提案手法の優位性を検証した。
論文 参考訳(メタデータ) (2022-06-07T13:35:14Z) - VQ-Flows: Vector Quantized Local Normalizing Flows [2.7998963147546148]
データ多様体上の「チャートマップ」として局所正規化フローの混合を学習するための新しい統計フレームワークを導入する。
本フレームワークは, 正規化フローのシグネチャ特性を保ちながら, 最近の手法の表現性を向上し, 正確な密度評価を行う。
論文 参考訳(メタデータ) (2022-03-22T09:22:18Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - Resampling Base Distributions of Normalizing Flows [0.0]
学習された拒絶サンプリングに基づいて,フローを正規化するためのベース分布を導入する。
ログライクリフの最大化と逆Kulback-Leibler分散の最適化の両方を用いて、適切な学習アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-10-29T14:44:44Z) - Discrete Denoising Flows [87.44537620217673]
分類的確率変数に対する離散的フローベースモデル(DDF)を提案する。
他の離散フローベースモデルとは対照的に、我々のモデルは勾配バイアスを導入することなく局所的に訓練することができる。
そこで本研究では, DDFs が離散フローより優れていることを示し, 対数類似度で測定した2値MNIST と Cityscapes のセグメンテーションマップをモデル化した。
論文 参考訳(メタデータ) (2021-07-24T14:47:22Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。