論文の概要: Tunable Quantum Neural Networks for Boolean Functions
- arxiv url: http://arxiv.org/abs/2003.14122v2
- Date: Fri, 27 Nov 2020 16:44:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-27 07:51:34.756038
- Title: Tunable Quantum Neural Networks for Boolean Functions
- Title(参考訳): ブール関数のための可変量子ニューラルネットワーク
- Authors: Viet Pham Ngoc and Herbert Wiklicky
- Abstract要約: ブール関数を学習するためにゲートを調整できる汎用量子回路のアイデアを導入する。
学習課題を実行するために,測定の欠如を利用したアルゴリズムを考案した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we propose a new approach to quantum neural networks. Our
multi-layer architecture avoids the use of measurements that usually emulate
the non-linear activation functions which are characteristic of the classical
neural networks. Despite this, our proposed architecture is still able to learn
any Boolean function. This ability arises from the correspondence that exists
between a Boolean function and a particular quantum circuit made out of
multi-controlled NOT gates. This correspondence is built via a polynomial
representation of the function called the algebraic normal form. We use this
construction to introduce the idea of a generic quantum circuit whose gates can
be tuned to learn any Boolean functions. In order to perform the learning task,
we have devised an algorithm that leverages the absence of measurements. When
presented with a superposition of all the binary inputs of length $n$, the
network can learn the target function in at most $n+1$ updates.
- Abstract(参考訳): 本稿では,量子ニューラルネットワークに対する新しいアプローチを提案する。
我々の多層アーキテクチャは、古典的ニューラルネットワークの特徴である非線形活性化関数をエミュレートする計測の使用を避ける。
それにもかかわらず、提案したアーキテクチャは、Boolean関数を学習することができる。
この能力は、ブール関数と多制御NOTゲートからなる特定の量子回路の間に存在する対応から生じる。
この対応は代数正規形式と呼ばれる関数の多項式表現によって構築される。
この構成を用いて、任意のブール関数を学習するためにゲートをチューニングできるジェネリック量子回路のアイデアを導入する。
学習課題を実行するために,測定の欠如を利用したアルゴリズムを考案した。
長さ$n$の全てのバイナリ入力の重ね合わせを提示すると、ネットワークは少なくとも$n+1$の更新でターゲット関数を学習できる。
関連論文リスト
- Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Realization of a quantum neural network using repeat-until-success
circuits in a superconducting quantum processor [0.0]
本稿では、リアルタイム制御-フローフィードバックによって実現されたリピート・アンティル・サクセス回路を用いて、非線形活性化機能を持つ量子ニューロンを実現する。
例えば、2ビットから1ビットのブール関数をすべて学習できる最小限のフィードフォワード量子ニューラルネットワークを構築する。
このモデルは非線形分類を行い、全ての入力の最大重ね合わせからなる単一のトレーニング状態の複数のコピーから効果的に学習する。
論文 参考訳(メタデータ) (2022-12-21T03:26:32Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
量子ニューラルネットワーク(QNN)は、機械学習、化学、最適化の応用を確立するための主要な戦略として登場した。
量子ニューラルネットワークのデータ再アップロードの表現能力に関する理論的枠組みを定式化する。
論文 参考訳(メタデータ) (2022-05-16T17:58:27Z) - Tunable Quantum Neural Networks in the QPAC-Learning Framework [0.0]
量子確率近似(QPAC)学習フレームワークにおけるチューナブル量子ニューラルネットワークの性能について検討する。
ターゲット概念を近似できるようにネットワークをチューニングするために,振幅増幅に基づくアルゴリズムを考案し,実装した。
数値的な結果から,本手法は単純なクラスから効率的に概念を学習できることが示唆された。
論文 参考訳(メタデータ) (2022-05-03T14:10:15Z) - Parametrized constant-depth quantum neuron [56.51261027148046]
本稿では,カーネルマシンをベースとした量子ニューロン構築フレームワークを提案する。
ここでは、指数的に大きい空間にテンソル積特徴写像を適用するニューロンについて述べる。
パラメトリゼーションにより、提案されたニューロンは、既存のニューロンが適合できない基礎となるパターンを最適に適合させることができることが判明した。
論文 参考訳(メタデータ) (2022-02-25T04:57:41Z) - Quantum activation functions for quantum neural networks [0.0]
情報を符号化する状態を測定することなく、必要な精度で解析関数を近似する方法を示す。
この結果は,ゲートモデル量子コンピュータのアーキテクチャにおける人工ニューラルネットワークの科学を再放送するものである。
論文 参考訳(メタデータ) (2022-01-10T23:55:49Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z) - Exposing Hardware Building Blocks to Machine Learning Frameworks [4.56877715768796]
我々は、そのようなニューロンをユニークな関数として補完するトポロジーを設計する方法に焦点をあてる。
我々は、カスタムの空間性と量子化によるニューラルネットワークのトレーニングを支援するライブラリを開発する。
論文 参考訳(メタデータ) (2020-04-10T14:26:00Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。