論文の概要: Sample Efficient Ensemble Learning with Catalyst.RL
- arxiv url: http://arxiv.org/abs/2003.14210v2
- Date: Tue, 7 Apr 2020 22:17:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 13:05:21.051822
- Title: Sample Efficient Ensemble Learning with Catalyst.RL
- Title(参考訳): Catalyst.RL を用いたサンプル効率的なアンサンブル学習
- Authors: Sergey Kolesnikov and Valentin Khrulkov
- Abstract要約: 本稿では,再現性およびサンプル高効率強化学習(RL)研究のためのオープンソースフレームワークであるCatalyst.RLを提案する。
Catalyst.RLの主な特徴は、大規模非同期分散トレーニング、様々なRLアルゴリズムの効率的な実装、nステップの戻り値、値分布、双曲強化学習などの補助的なトリックである。
- 参考スコア(独自算出の注目度): 13.726637149320272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Catalyst.RL, an open-source PyTorch framework for reproducible and
sample efficient reinforcement learning (RL) research. Main features of
Catalyst.RL include large-scale asynchronous distributed training, efficient
implementations of various RL algorithms and auxiliary tricks, such as n-step
returns, value distributions, hyperbolic reinforcement learning, etc. To
demonstrate the effectiveness of Catalyst.RL, we applied it to a physics-based
reinforcement learning challenge "NeurIPS 2019: Learn to Move -- Walk Around"
with the objective to build a locomotion controller for a human musculoskeletal
model. The environment is computationally expensive, has a high-dimensional
continuous action space and is stochastic. Our team took the 2nd place,
capitalizing on the ability of Catalyst.RL to train high-quality and
sample-efficient RL agents in only a few hours of training time. The
implementation along with experiments is open-sourced so results can be
reproduced and novel ideas tried out.
- Abstract(参考訳): 本稿では、再現性およびサンプル高効率強化学習(RL)研究のためのオープンソースのPyTorchフレームワークであるCatalyst.RLを提案する。
Catalyst.RLの主な特徴は、大規模非同期分散トレーニング、様々なRLアルゴリズムの効率的な実装、nステップの戻り値、値分布、双曲強化学習などの補助的なトリックである。
Catalyst.RL の有効性を実証するため,人間の筋骨格モデルのための移動制御装置を構築することを目的として,物理学に基づく強化学習課題 "NeurIPS 2019: Learn to Move -- Walk Around" に適用した。
この環境は計算コストが高く、高次元の連続的な行動空間を持ち、確率的である。
我々のチームは2位となり、Catalyst.RLの高性能で試料効率のよいRLエージェントをわずか数時間で訓練できる能力を活用しました。
実験とともに実装はオープンソースなので、成果を再現し、新しいアイデアを試すことができる。
関連論文リスト
- Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
本稿では,多種多様な操作タスクに対して印象的な性能を示す,ループ内視覚に基づくRLシステムを提案する。
提案手法では,実証と人間の修正,効率的なRLアルゴリズム,その他のシステムレベルの設計選択を統合してポリシを学習する。
提案手法は,再現学習のベースラインと先行RLアプローチを著しく上回り,成功率の平均2倍,実行速度1.8倍に向上した。
論文 参考訳(メタデータ) (2024-10-29T08:12:20Z) - SHIRE: Enhancing Sample Efficiency using Human Intuition in REinforcement Learning [11.304750795377657]
確率的図形モデル(PGM)を用いた人間の直観を符号化するフレームワークShireを提案する。
ShiREは、評価対象環境の25~78%のサンプル効率を、無視可能なオーバーヘッドコストで達成します。
論文 参考訳(メタデータ) (2024-09-16T04:46:22Z) - A Benchmark Environment for Offline Reinforcement Learning in Racing Games [54.83171948184851]
オフライン強化学習(英語: Offline Reinforcement Learning、ORL)は、従来の強化学習(RL)の高サンプリング複雑さを減らすための有望なアプローチである。
本稿では,ORL研究のための新しい環境であるOfflineManiaを紹介する。
TrackManiaシリーズにインスパイアされ、Unity 3Dゲームエンジンで開発された。
論文 参考訳(メタデータ) (2024-07-12T16:44:03Z) - Leveraging Sub-Optimal Data for Human-in-the-Loop Reinforcement Learning [7.07264650720021]
サブ最適データ事前学習(Sub-Optimal Data Pre-training, SDP)は、HitL RLアルゴリズムを改善するために、報酬のないサブ最適データを活用するアプローチである。
我々はSDPが最先端のHitL RLアルゴリズムによる競合性能を大幅に向上または達成できることを示す。
論文 参考訳(メタデータ) (2024-04-30T18:58:33Z) - A Real-World Quadrupedal Locomotion Benchmark for Offline Reinforcement
Learning [27.00483962026472]
現実的な四足歩行データセットにおける11のオフライン強化学習アルゴリズムをベンチマークした。
実験の結果,ORLアルゴリズムはモデルフリーのRLに比べて競争性能がよいことがわかった。
提案するベンチマークは,実世界の歩行作業におけるORLアルゴリズムの性能をテスト・評価するための開発プラットフォームとして機能する。
論文 参考訳(メタデータ) (2023-09-13T13:18:29Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
本稿では,RLトレーニングアプリケーションを汎用フレームワークに統合する,RLトレーニングのデータフローに関する新しい抽象化を提案する。
スケーラブルで効率的で分散的なRLシステムであるReaLly scalableRLを開発した。
SRLは15k以上のCPUコアでRL実験を大規模に実施した初めての学術コミュニティである。
論文 参考訳(メタデータ) (2023-06-29T05:16:25Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
状態表現学習(SRL)は,複雑な感覚データからタスク関連特徴を低次元状態に符号化する。
我々は、SRLの解釈を改善するために、専門家のデモンストレーションを活用するために、ドメイン類似と呼ばれる新しいSRLを導入する。
我々はPOARを実証的に検証し、高次元のタスクを効率的に処理し、スクラッチから直接実生活ロボットの訓練を容易にする。
論文 参考訳(メタデータ) (2021-09-17T16:52:03Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
我々は、強化学習(RL)における微分可能なアーキテクチャ探索(DARTS)の最初の応用の1つであるRL-DARTSを紹介する。
画像エンコーダをDARTSスーパーネットに置き換えることにより、検索方法はサンプリング効率が高く、余分な計算資源が最小限必要であり、また、既存のコードに小さな変更を加える必要がなく、オフ・ポリティクスとオン・ポリティクスのRLアルゴリズムとも互換性がある。
スーパーネットはより優れたセルを徐々に学習し、手作業で設計したポリシーに対して高い競争力を持つ代替アーキテクチャへとつながり、RLポリシーの以前の設計選択も検証できることを示す。
論文 参考訳(メタデータ) (2021-06-04T03:08:43Z) - Learning to Prune Deep Neural Networks via Reinforcement Learning [64.85939668308966]
PuRLは、ニューラルネットワークのプルーニングのためのディープ強化学習ベースのアルゴリズムである。
現在の最先端の手法に匹敵する幅と精度を実現している。
論文 参考訳(メタデータ) (2020-07-09T13:06:07Z) - MushroomRL: Simplifying Reinforcement Learning Research [60.70556446270147]
MushroomRLはオープンソースのPythonライブラリで、強化学習(RL)実験の実装と実行を簡単にするために開発された。
他の利用可能なライブラリと比較して、MushroomRLは、新しいRL方法論の実装とテストの労力を最小限に抑えるために、包括的で柔軟なフレームワークを提供することを目的として作られた。
論文 参考訳(メタデータ) (2020-01-04T17:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。