Neural network based country wise risk prediction of COVID-19
- URL: http://arxiv.org/abs/2004.00959v2
- Date: Wed, 16 Sep 2020 15:16:15 GMT
- Title: Neural network based country wise risk prediction of COVID-19
- Authors: Ratnabali Pal, Arif Ahmed Sekh, Samarjit Kar, Dilip K. Prasad
- Abstract summary: Recent worldwide outbreak of the novel coronavirus (COVID-19) has opened up new challenges to the research community.
Here, we propose a shallow long short-term memory (LSTM) based neural network to predict the risk category of a country.
Results show that the proposed pipeline outperforms state-of-the-art methods for data of 180 countries.
- Score: 12.500738729507676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent worldwide outbreak of the novel coronavirus (COVID-19) has opened
up new challenges to the research community. Artificial intelligence (AI)
driven methods can be useful to predict the parameters, risks, and effects of
such an epidemic. Such predictions can be helpful to control and prevent the
spread of such diseases. The main challenges of applying AI is the small volume
of data and the uncertain nature. Here, we propose a shallow long short-term
memory (LSTM) based neural network to predict the risk category of a country.
We have used a Bayesian optimization framework to optimize and automatically
design country-specific networks. The results show that the proposed pipeline
outperforms state-of-the-art methods for data of 180 countries and can be a
useful tool for such risk categorization. We have also experimented with the
trend data and weather data combined for the prediction. The outcome shows that
the weather does not have a significant role. The tool can be used to predict
long-duration outbreak of such an epidemic such that we can take preventive
steps earlier
Related papers
- MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - An ensemble neural network approach to forecast Dengue outbreak based on
climatic condition [2.3080278150530424]
Dengue fever is a virulent disease spreading over 100 tropical and subtropical countries in Africa, the Americas, and Asia.
The proposed model is an integrated approach that uses wavelet transformation into an ensemble neural network framework.
The proposed XEWNet allows complex non-linear relationships between the dengue incidence cases and rainfall.
arXiv Detail & Related papers (2022-12-16T07:49:15Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Modeling the geospatial evolution of COVID-19 using spatio-temporal
convolutional sequence-to-sequence neural networks [48.7576911714538]
Portugal was the country in the world with the largest incidence rate, with 14-days incidence rates per 100,000 inhabitants in excess of 1000.
Despite its importance, accurate prediction of the geospatial evolution of COVID-19 remains a challenge.
arXiv Detail & Related papers (2021-05-06T15:24:00Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A self-supervised neural-analytic method to predict the evolution of
COVID-19 in Romania [10.760851506126105]
We use a recently published improved version of SEIR, which is the classic, established model for infectious diseases.
We propose a self-supervised approach to train a deep convolutional network to guess the correct set of ModifiedSEIR model parameters.
We find an optimistic result in the case fatality rate for Romania which may be around 0.3% and we also demonstrate that our model is able to correctly predict the number of daily fatalities for up to three weeks in the future.
arXiv Detail & Related papers (2020-06-23T12:00:04Z) - Data-driven Simulation and Optimization for Covid-19 Exit Strategies [16.31545249131776]
The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy.
We have built a pandemic simulation and forecasting toolkit that combines a deep learning estimation of the epidemiological parameters of the disease.
arXiv Detail & Related papers (2020-06-12T11:18:25Z) - Forecasting the Spread of Covid-19 Under Control Scenarios Using LSTM
and Dynamic Behavioral Models [2.11622808613962]
This study proposes a novel hybrid model which combines a Long short-term memory (LSTM) artificial recurrent neural network with dynamic behavioral models.
The proposed model considers the effect of multiple factors to enhance the accuracy in predicting the number of cases and deaths across the top ten most-affected countries and Australia.
arXiv Detail & Related papers (2020-05-24T10:43:55Z) - COVID-19 forecasting based on an improved interior search algorithm and
multi-layer feed forward neural network [0.0]
A new forecasting model is presented to analyze and forecast the confirmed cases of COVID-19 for the coming days.
The ISACL-MFNN model integrates an improved interior search algorithm (ISA) based on chaotic learning (CL) strategy into a multi-layer feed-forward neural network (MFNN)
The proposed model is investigated in the most affected countries (i.e., USA, Italy, and Spain)
arXiv Detail & Related papers (2020-04-06T12:08:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.