論文の概要: Trajectory Optimization for Nonlinear Multi-Agent Systems using
Decentralized Learning Model Predictive Control
- arxiv url: http://arxiv.org/abs/2004.01298v4
- Date: Fri, 18 Dec 2020 05:00:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 13:21:54.173011
- Title: Trajectory Optimization for Nonlinear Multi-Agent Systems using
Decentralized Learning Model Predictive Control
- Title(参考訳): 分散学習モデル予測制御を用いた非線形マルチエージェントシステムの軌道最適化
- Authors: Edward L. Zhu, Yvonne R. St\"urz, Ugo Rosolia, Francesco Borrelli
- Abstract要約: 非線形疎結合力学と結合状態制約を持つマルチエージェントシステムに対する学習モデル予測制御に基づく分散化最小時間軌道最適化手法を提案する。
このフレームワークは,タスク実行の各イテレーションにおけるエージェント間の通信を不要とし,永続的実現性,有限時間閉ループ収束性,グローバルシステムのタスク反復による非遅延性能を保証する。
- 参考スコア(独自算出の注目度): 5.2647625557619815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a decentralized minimum-time trajectory optimization scheme based
on learning model predictive control for multi-agent systems with nonlinear
decoupled dynamics and coupled state constraints. By performing the same task
iteratively, data from previous task executions is used to construct and
improve local time-varying safe sets and an approximate value function. These
are used in a decoupled MPC problem as terminal sets and terminal cost
functions. Our framework results in a decentralized controller, which requires
no communication between agents over each iteration of task execution, and
guarantees persistent feasibility, finite-time closed-loop convergence, and
non-decreasing performance of the global system over task iterations. Numerical
experiments of a multi-vehicle collision avoidance scenario demonstrate the
effectiveness of the proposed scheme.
- Abstract(参考訳): 非線形疎結合力学と結合状態制約を持つマルチエージェントシステムの学習モデル予測制御に基づく分散化最小時間軌道最適化手法を提案する。
同じタスクを反復的に実行することにより、前回のタスク実行のデータを使用して、ローカルな時間変動セーフセットと近似値関数を構築し、改善する。
これらはデカップリングされたmpc問題において端末セットと端末コスト関数として使用される。
このフレームワークは,タスク実行の各イテレーションにおけるエージェント間の通信を不要とし,永続的実現性,有限時間閉ループ収束性,グローバルシステムのタスク反復による非遅延性能を保証する。
多車衝突回避シナリオの数値実験により提案手法の有効性が示された。
関連論文リスト
- Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach [0.0]
ニューラルネットワーク(NN)は、優れたパフォーマンスをもたらす制御ポリシのパラメータ化に利用することができる。
NNの小さな入力変更に対する感度は、クローズドループシステムの不安定化のリスクを引き起こす。
これらの問題に対処するために、ポート・ハミルトンシステムのフレームワークを活用して、連続時間分散制御ポリシーを設計する。
提案する分散コントローラの有効性は,非ホロノミック移動ロボットのコンセンサス制御によって実証される。
論文 参考訳(メタデータ) (2024-11-15T10:44:29Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
本研究の目的は,モデルベース学習によるマルチエージェント制御のデータ効率の向上である。
エージェントが協力的であり、隣人とのみローカルに通信するネットワークシステムについて検討する。
提案手法では,各エージェントが将来の状態を予測し,通信によって予測をブロードキャストする動的モデルを学習し,その後,モデルロールアウトに基づいてポリシーをトレーニングする。
論文 参考訳(メタデータ) (2022-07-13T23:52:14Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Data-Driven Optimized Tracking Control Heuristic for MIMO Structures: A
Balance System Case Study [8.035375408614776]
PIDは2入力の2アウトプットバランスシステムで示される。
自己調整型非線形しきい値とニューラルネットワークを統合し、所望の過渡特性と定常特性を妥協する。
ニューラルネットワークは、客観的コスト関数のような重み付き導関数の最適化を訓練する。
論文 参考訳(メタデータ) (2021-04-01T02:00:20Z) - Deep Distribution-preserving Incomplete Clustering with Optimal
Transport [43.0056459311929]
DDIC-OT(Deep Distribution-preserving Incomplete Clustering with Optimal Transport)と呼ばれる新しい深層不完全クラスタリング手法を提案する。
提案ネットワークは, 既存の不完全クラスタリング手法に対して, 異なる欠落率で優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-03-21T15:43:17Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
時間駆動学習は、新しいデータが到着すると予測モデルのパラメータを継続的に更新する機械学習手法を指す。
ノイズなどの重要なシステムイベントによる時間駆動型dHDPの更新を防止することが望ましい。
イベント駆動型dHDPアルゴリズムは,従来の時間駆動型dHDPと比較して動作することを示す。
論文 参考訳(メタデータ) (2020-06-16T05:51:25Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。