Trajectory Optimization for Nonlinear Multi-Agent Systems using
Decentralized Learning Model Predictive Control
- URL: http://arxiv.org/abs/2004.01298v4
- Date: Fri, 18 Dec 2020 05:00:29 GMT
- Title: Trajectory Optimization for Nonlinear Multi-Agent Systems using
Decentralized Learning Model Predictive Control
- Authors: Edward L. Zhu, Yvonne R. St\"urz, Ugo Rosolia, Francesco Borrelli
- Abstract summary: We present a decentralized minimum-time trajectory optimization scheme based on learning model predictive control for multi-agent systems with nonlinear decoupled dynamics and coupled state constraints.
Our framework results in a decentralized controller, which requires no communication between agents over each iteration of task execution, and guarantees persistent feasibility, finite-time closed-loop convergence, and non-decreasing performance of the global system over task iterations.
- Score: 5.2647625557619815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a decentralized minimum-time trajectory optimization scheme based
on learning model predictive control for multi-agent systems with nonlinear
decoupled dynamics and coupled state constraints. By performing the same task
iteratively, data from previous task executions is used to construct and
improve local time-varying safe sets and an approximate value function. These
are used in a decoupled MPC problem as terminal sets and terminal cost
functions. Our framework results in a decentralized controller, which requires
no communication between agents over each iteration of task execution, and
guarantees persistent feasibility, finite-time closed-loop convergence, and
non-decreasing performance of the global system over task iterations. Numerical
experiments of a multi-vehicle collision avoidance scenario demonstrate the
effectiveness of the proposed scheme.
Related papers
- Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
This work aims to improve data efficiency of multi-agent control by model-based learning.
We consider networked systems where agents are cooperative and communicate only locally with their neighbors.
In our method, each agent learns a dynamic model to predict future states and broadcast their predictions by communication, and then the policies are trained under the model rollouts.
arXiv Detail & Related papers (2022-07-13T23:52:14Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Data-Driven Optimized Tracking Control Heuristic for MIMO Structures: A
Balance System Case Study [8.035375408614776]
The PID is illustrated on a two-input two-output balance system.
It integrates a self-adjusting nonlinear threshold with a neural network to compromise between the desired transient and steady state characteristics.
The neural network is trained upon optimizing a weighted-derivative like objective cost function.
arXiv Detail & Related papers (2021-04-01T02:00:20Z) - Deep Distribution-preserving Incomplete Clustering with Optimal
Transport [43.0056459311929]
We propose a novel deep incomplete clustering method, named Deep Distribution-preserving Incomplete Clustering with Optimal Transport (DDIC-OT)
The proposed network achieves superior and stable clustering performance improvement against existing state-of-the-art incomplete clustering methods over different missing ratios.
arXiv Detail & Related papers (2021-03-21T15:43:17Z) - Distributed Algorithms for Linearly-Solvable Optimal Control in
Networked Multi-Agent Systems [15.782670973813774]
A distributed framework is proposed to partition the optimal control problem of a networked MAS into several local optimal control problems.
For discrete-time systems, the joint Bellman equation of each subsystem is transformed into a system of linear equations.
For continuous-time systems, the joint optimality equation of each subsystem is converted into a linear partial differential equation.
arXiv Detail & Related papers (2021-02-18T01:31:17Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.