Trajectory Optimization for Nonlinear Multi-Agent Systems using
Decentralized Learning Model Predictive Control
- URL: http://arxiv.org/abs/2004.01298v4
- Date: Fri, 18 Dec 2020 05:00:29 GMT
- Title: Trajectory Optimization for Nonlinear Multi-Agent Systems using
Decentralized Learning Model Predictive Control
- Authors: Edward L. Zhu, Yvonne R. St\"urz, Ugo Rosolia, Francesco Borrelli
- Abstract summary: We present a decentralized minimum-time trajectory optimization scheme based on learning model predictive control for multi-agent systems with nonlinear decoupled dynamics and coupled state constraints.
Our framework results in a decentralized controller, which requires no communication between agents over each iteration of task execution, and guarantees persistent feasibility, finite-time closed-loop convergence, and non-decreasing performance of the global system over task iterations.
- Score: 5.2647625557619815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a decentralized minimum-time trajectory optimization scheme based
on learning model predictive control for multi-agent systems with nonlinear
decoupled dynamics and coupled state constraints. By performing the same task
iteratively, data from previous task executions is used to construct and
improve local time-varying safe sets and an approximate value function. These
are used in a decoupled MPC problem as terminal sets and terminal cost
functions. Our framework results in a decentralized controller, which requires
no communication between agents over each iteration of task execution, and
guarantees persistent feasibility, finite-time closed-loop convergence, and
non-decreasing performance of the global system over task iterations. Numerical
experiments of a multi-vehicle collision avoidance scenario demonstrate the
effectiveness of the proposed scheme.
Related papers
- Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.
We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - Latent feedback control of distributed systems in multiple scenarios through deep learning-based reduced order models [3.5161229331588095]
Continuous monitoring and real-time control of high-dimensional distributed systems are crucial in applications to ensure a desired physical behavior.
Traditional feedback control design that relies on full-order models fails to meet these requirements due to the delay in the control computation.
We propose a real-time closed-loop control strategy enhanced by nonlinear non-intrusive Deep Learning-based Reduced Order Models (DL-ROMs)
arXiv Detail & Related papers (2024-12-13T08:04:21Z) - Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach [0.0]
Neural Networks (NNs) can be leveraged to parametrize control policies that yield good performance.
NNs' sensitivity to small input changes poses a risk of destabilizing the closed-loop system.
To address these problems, we leverage the framework of port-Hamiltonian systems to design continuous-time distributed control policies.
The effectiveness of the proposed distributed controllers is demonstrated through consensus control of non-holonomic mobile robots.
arXiv Detail & Related papers (2024-11-15T10:44:29Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
This work aims to improve data efficiency of multi-agent control by model-based learning.
We consider networked systems where agents are cooperative and communicate only locally with their neighbors.
In our method, each agent learns a dynamic model to predict future states and broadcast their predictions by communication, and then the policies are trained under the model rollouts.
arXiv Detail & Related papers (2022-07-13T23:52:14Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Data-Driven Optimized Tracking Control Heuristic for MIMO Structures: A
Balance System Case Study [8.035375408614776]
The PID is illustrated on a two-input two-output balance system.
It integrates a self-adjusting nonlinear threshold with a neural network to compromise between the desired transient and steady state characteristics.
The neural network is trained upon optimizing a weighted-derivative like objective cost function.
arXiv Detail & Related papers (2021-04-01T02:00:20Z) - Deep Distribution-preserving Incomplete Clustering with Optimal
Transport [43.0056459311929]
We propose a novel deep incomplete clustering method, named Deep Distribution-preserving Incomplete Clustering with Optimal Transport (DDIC-OT)
The proposed network achieves superior and stable clustering performance improvement against existing state-of-the-art incomplete clustering methods over different missing ratios.
arXiv Detail & Related papers (2021-03-21T15:43:17Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.