論文の概要: Abstracting Fairness: Oracles, Metrics, and Interpretability
- arxiv url: http://arxiv.org/abs/2004.01840v1
- Date: Sat, 4 Apr 2020 03:14:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 22:43:45.806576
- Title: Abstracting Fairness: Oracles, Metrics, and Interpretability
- Title(参考訳): フェアネスの抽象化:オラクル、メトリクス、解釈可能性
- Authors: Cynthia Dwork, Christina Ilvento, Guy N. Rothblum, Pragya Sur
- Abstract要約: 我々は,真理の公正さの理解を基盤とした,公正な神託から学べるものについて検討する。
我々の結果は、非常に望ましいが定義されていない分類システムの特性である解釈性(interpretablity)に影響を及ぼす。
- 参考スコア(独自算出の注目度): 21.59432019966861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well understood that classification algorithms, for example, for
deciding on loan applications, cannot be evaluated for fairness without taking
context into account. We examine what can be learned from a fairness oracle
equipped with an underlying understanding of ``true'' fairness. The oracle
takes as input a (context, classifier) pair satisfying an arbitrary fairness
definition, and accepts or rejects the pair according to whether the classifier
satisfies the underlying fairness truth. Our principal conceptual result is an
extraction procedure that learns the underlying truth; moreover, the procedure
can learn an approximation to this truth given access to a weak form of the
oracle. Since every ``truly fair'' classifier induces a coarse metric, in which
those receiving the same decision are at distance zero from one another and
those receiving different decisions are at distance one, this extraction
process provides the basis for ensuring a rough form of metric fairness, also
known as individual fairness. Our principal technical result is a higher
fidelity extractor under a mild technical constraint on the weak oracle's
conception of fairness. Our framework permits the scenario in which many
classifiers, with differing outcomes, may all be considered fair. Our results
have implications for interpretablity -- a highly desired but poorly defined
property of classification systems that endeavors to permit a human arbiter to
reject classifiers deemed to be ``unfair'' or illegitimately derived.
- Abstract(参考訳): 例えば、ローンアプリケーションを決定するための分類アルゴリズムは、文脈を考慮せずに公平さのために評価できないことはよく理解されている。
我々は、oracleが ``true'' のフェアネスを基礎的に理解しているフェアネスから何が学べるかを調べます。
オラクルは任意のフェアネス定義を満たす(コンテキスト、分類器)ペアとして入力を受け取り、その分類器が基礎となるフェアネスの真理を満たすか否かに応じてペアを受理または拒否する。
私たちの主要な概念的な結果は、基礎となる真理を学ぶ抽出手順です。さらに、この手順は、オラクルの弱い形式へのアクセスによって、この真理の近似を学べます。
すべての `truly fair'' 分類器が粗い計量を誘導するので、同じ決定を受けた人は互いにゼロであり、異なる決定を受けた者は距離1であるので、この抽出プロセスは、個別の公平性としても知られる、粗い計量公正性を保証する基礎となる。
我々の主な技術的成果は、弱オラクルの公正性の概念に対する穏やかな技術的制約の下での高忠実度抽出器である。
我々のフレームワークは、異なる結果を持つ多くの分類器がすべて公平であると考えられるシナリオを許容する。
本研究の結果は,「不公平」や「不公平」とみなす分類器の拒絶をヒトのアービターが許すような,高度に望まれるが未定義の分類システムの特性を示唆している。
関連論文リスト
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - Fairness and Unfairness in Binary and Multiclass Classification: Quantifying, Calculating, and Bounding [22.449347663780767]
本稿では,分類器の公平性を定量的に分析できる,不公平性の新しい解釈可能な尺度を提案する。
分類器の条件付き乱雑行列が知られている場合に、この測度がどのように計算されるかを示す。
多様なアプリケーションを表すデータセットに関する実験を報告する。
論文 参考訳(メタデータ) (2022-06-07T12:26:28Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Fairness Through Counterfactual Utilities [0.0]
Demographic Parity や Equal Opportunity のようなグループフェアネスの定義は、それらが分類問題に制限される基本的な決定確率について仮定する。
我々は、すべての機械学習環境に明確に拡張されたグループフェアネス定義の一般化セットを提供する。
論文 参考訳(メタデータ) (2021-08-11T16:51:27Z) - Everything is Relative: Understanding Fairness with Optimal Transport [1.160208922584163]
バイアスとその構造を解釈可能かつ定量に探索できる公平性への最適輸送ベースアプローチを提案する。
我々のフレームワークは、アルゴリズムによる差別のよく知られた例を復元し、他の指標が失敗したときの不公平さを検知し、レコメンデーションの機会を探ることができる。
論文 参考訳(メタデータ) (2021-02-20T13:57:53Z) - On the Fairness of Causal Algorithmic Recourse [36.519629650529666]
グループレベルでの公平度基準と個人レベルでの公平度基準を提案する。
ここでは,会話の公平さは予測の公平さと相補的であることを示す。
本稿では, 社会的介入によって, データ生成プロセスの公正性違反に対処できるかどうかを論じる。
論文 参考訳(メタデータ) (2020-10-13T16:35:06Z) - Two Simple Ways to Learn Individual Fairness Metrics from Data [47.6390279192406]
個人的公正はアルゴリズム的公正の直感的な定義であり、グループ的公正の欠点のいくつかに対処する。
多くのMLタスクに対して広く受け入れられている公正な基準が欠如していることが、個人の公正を広く採用する大きな障壁である。
学習した指標による公正なトレーニングが、性別や人種的偏見に影響を受けやすい3つの機械学習タスクの公平性を改善することを実証的に示す。
論文 参考訳(メタデータ) (2020-06-19T23:47:15Z) - Statistical Equity: A Fairness Classification Objective [6.174903055136084]
エクイティの原則によって動機付けられた新しい公平性の定義を提案する。
フェアネスの定義を形式化し、適切な文脈でモチベーションを与えます。
我々は、定義の有効性を示すために、複数の自動評価と人的評価を行う。
論文 参考訳(メタデータ) (2020-05-14T23:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。