論文の概要: On Tractable Representations of Binary Neural Networks
- arxiv url: http://arxiv.org/abs/2004.02082v2
- Date: Fri, 3 Jul 2020 03:22:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 12:07:55.213912
- Title: On Tractable Representations of Binary Neural Networks
- Title(参考訳): 2元ニューラルネットワークのトラクタブル表現について
- Authors: Weijia Shi and Andy Shih and Adnan Darwiche and Arthur Choi
- Abstract要約: 我々は、二項ニューラルネットワークの決定関数を、順序付き二項決定図(OBDD)や意味決定図(SDD)などの抽出可能な表現にコンパイルすることを検討する。
実験では,SDDとしてニューラルネットワークのコンパクトな表現を得ることが可能であることを示す。
- 参考スコア(独自算出の注目度): 23.50970665150779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the compilation of a binary neural network's decision function
into tractable representations such as Ordered Binary Decision Diagrams (OBDDs)
and Sentential Decision Diagrams (SDDs). Obtaining this function as an OBDD/SDD
facilitates the explanation and formal verification of a neural network's
behavior. First, we consider the task of verifying the robustness of a neural
network, and show how we can compute the expected robustness of a neural
network, given an OBDD/SDD representation of it. Next, we consider a more
efficient approach for compiling neural networks, based on a pseudo-polynomial
time algorithm for compiling a neuron. We then provide a case study in a
handwritten digits dataset, highlighting how two neural networks trained from
the same dataset can have very high accuracies, yet have very different levels
of robustness. Finally, in experiments, we show that it is feasible to obtain
compact representations of neural networks as SDDs.
- Abstract(参考訳): 我々は、二項ニューラルネットワークの決定関数を、順序付き二項決定図(OBDD)や意味決定図(SDD)などの抽出可能な表現にコンパイルする。
この関数をobdd/sddとして取得することで、ニューラルネットワークの動作の説明と形式的検証が容易になる。
まず、ニューラルネットワークのロバスト性を検証するタスクを検討し、そのOBDD/SDD表現を考慮して、ニューラルネットワークの期待ロバスト性を計算する方法を示す。
次に、ニューロンをコンパイルするための疑似多項時間アルゴリズムに基づいて、ニューラルネットワークをコンパイルするためのより効率的なアプローチを検討する。
次に、手書きの桁データセットでケーススタディを提供し、同じデータセットからトレーニングされた2つのニューラルネットワークが、非常に高い精度を持つが、非常に異なるレベルの堅牢性を持つことができることを強調します。
最後に,実験では,ニューラルネットワークのコンパクト表現をsdsとして得ることが可能であることを示す。
関連論文リスト
- Verified Neural Compressed Sensing [58.98637799432153]
精度の高い計算タスクのために、初めて(私たちの知識を最大限に活用するために)証明可能なニューラルネットワークを開発します。
極小問題次元(最大50)では、線形および双項線形測定からスパースベクトルを確実に回復するニューラルネットワークを訓練できることを示す。
ネットワークの複雑さは問題の難易度に適応できることを示し、従来の圧縮センシング手法が証明不可能な問題を解く。
論文 参考訳(メタデータ) (2024-05-07T12:20:12Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - A Hierarchical Fused Quantum Fuzzy Neural Network for Image Classification [8.7057403071943]
我々は新しい階層型融合量子ファジィニューラルネットワーク(HQFNN)を提案した。
HQFNNは量子ニューラルネットワークを使用してファジィニューラルネットワークのファジィメンバシップ関数を学習する。
その結果,提案手法は既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-03-14T12:09:36Z) - Identifying Interpretable Visual Features in Artificial and Biological
Neural Systems [3.604033202771937]
ニューラルネットワークの単一ニューロンはしばしば、個々の直感的に意味のある特徴を表すものとして解釈される。
多くのニューロンは$textitmixed selectivity$、すなわち複数の無関係な特徴を示す。
本稿では、視覚的解釈可能性の定量化と、ネットワークアクティベーション空間における意味のある方向を見つけるためのアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-17T17:41:28Z) - Efficient, probabilistic analysis of combinatorial neural codes [0.0]
ニューラルネットワークは、個々のニューロンの活動の組み合わせの形で入力を符号化する。
これらのニューラルネットワークは、その高次元性としばしば大量のデータのため、計算上の課題を示す。
従来の手法を小さな例に適用し,実験によって生成された大きなニューラルコードに適用する。
論文 参考訳(メタデータ) (2022-10-19T11:58:26Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Fourier Neural Networks for Function Approximation [2.840363325289377]
ニューラルネットワークが普遍近似器であることは広く証明されている。
特に、狭いニューラルネットワークが、ディープニューラルネットワークによって実装されている関数を近似するために、ネットワークは指数関数的に多数のニューロンを取ることが証明されている。
論文 参考訳(メタデータ) (2021-10-21T09:30:26Z) - Dive into Layers: Neural Network Capacity Bounding using Algebraic
Geometry [55.57953219617467]
ニューラルネットワークの学習性はそのサイズと直接関連していることを示す。
入力データとニューラルネットワークのトポロジ的幾何学的複雑さを測定するためにベッチ数を用いる。
実世界のデータセットMNISTで実験を行い、分析結果と結論を検証した。
論文 参考訳(メタデータ) (2021-09-03T11:45:51Z) - Optimal Approximation with Sparse Neural Networks and Applications [0.0]
深い疎結合ニューラルネットワークを用いて、関数クラスの複雑性を$L(mathbb Rd)$で測定する。
また、ニューラルネットワークを誘導する関数の可算コレクションである表現システムについても紹介する。
次に、レート歪曲理論とウェッジレット構成を用いて、$beta$マンガ的関数と呼ばれるクラスの複雑性を分析する。
論文 参考訳(メタデータ) (2021-08-14T05:14:13Z) - Training Binary Neural Networks through Learning with Noisy Supervision [76.26677550127656]
本稿では,ニューラルネットワーク上の二項化操作を学習の観点から定式化する。
ベンチマークデータセットの実験結果から,提案手法がベースラインよりも一貫した改善を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-10-10T01:59:39Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
この研究で、中間的神経表現がニューラルネットワークにさらなる柔軟性をもたらすことを実証する。
提案手法は, 生の入力と比較して, サンプルの複雑度を向上できることを示す。
この結果から, 深度が深層学習においてなぜ重要かという新たな視点が得られた。
論文 参考訳(メタデータ) (2020-06-24T02:44:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。