論文の概要: Efficient, probabilistic analysis of combinatorial neural codes
- arxiv url: http://arxiv.org/abs/2210.10492v1
- Date: Wed, 19 Oct 2022 11:58:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 14:18:18.396312
- Title: Efficient, probabilistic analysis of combinatorial neural codes
- Title(参考訳): 組合せ神経系の効率的確率論的解析
- Authors: Thomas F Burns, Irwansyah
- Abstract要約: ニューラルネットワークは、個々のニューロンの活動の組み合わせの形で入力を符号化する。
これらのニューラルネットワークは、その高次元性としばしば大量のデータのため、計算上の課題を示す。
従来の手法を小さな例に適用し,実験によって生成された大きなニューラルコードに適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Artificial and biological neural networks (ANNs and BNNs) can encode inputs
in the form of combinations of individual neurons' activities. These
combinatorial neural codes present a computational challenge for direct and
efficient analysis due to their high dimensionality and often large volumes of
data. Here we improve the computational complexity -- from factorial to
quadratic time -- of direct algebraic methods previously applied to small
examples and apply them to large neural codes generated by experiments. These
methods provide a novel and efficient way of probing algebraic, geometric, and
topological characteristics of combinatorial neural codes and provide insights
into how such characteristics are related to learning and experience in neural
networks. We introduce a procedure to perform hypothesis testing on the
intrinsic features of neural codes using information geometry. We then apply
these methods to neural activities from an ANN for image classification and a
BNN for 2D navigation to, without observing any inputs or outputs, estimate the
structure and dimensionality of the stimulus or task space. Additionally, we
demonstrate how an ANN varies its internal representations across network depth
and during learning.
- Abstract(参考訳): 人工および生物学的ニューラルネットワーク(annsおよびbnn)は、個々のニューロンの活動の組み合わせの形で入力をエンコードすることができる。
これらの組合せニューラルネットワークは、その高次元性としばしば大量のデータのために、直接的で効率的な分析のための計算上の課題を示す。
ここでは、以前小さな例に適用された直接代数的手法の計算複雑性(因子時間から二次時間)を改善し、実験によって生成された大きなニューラルコードに適用する。
これらの手法は、組合せ型ニューラルネットワークの代数的、幾何学的、位相的特性を探索し、ニューラルネットワークの学習や経験とどのように関連しているかについての洞察を提供する。
本稿では,情報幾何学を用いたニューラルコード固有の特徴の仮説テストを行う手法を提案する。
次に、これらの手法を、画像分類のためのANNと2次元ナビゲーションのためのBNNの神経活動に適用し、入力や出力を観察せずに、刺激やタスク空間の構造と寸法を推定する。
さらに、ネットワーク深度や学習中に、ANNの内部表現がどのように変化するかを示す。
関連論文リスト
- Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Computational and Storage Efficient Quadratic Neurons for Deep Neural
Networks [10.379191500493503]
実験により、提案した二次ニューロン構造は、様々なタスクにおいて優れた計算効率と記憶効率を示すことが示された。
本研究は、2次計算情報の高度活用によって区別される2次ニューロンアーキテクチャを導入する。
論文 参考訳(メタデータ) (2023-06-10T11:25:31Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - On Tractable Representations of Binary Neural Networks [23.50970665150779]
我々は、二項ニューラルネットワークの決定関数を、順序付き二項決定図(OBDD)や意味決定図(SDD)などの抽出可能な表現にコンパイルすることを検討する。
実験では,SDDとしてニューラルネットワークのコンパクトな表現を得ることが可能であることを示す。
論文 参考訳(メタデータ) (2020-04-05T03:21:26Z) - Neural Rule Ensembles: Encoding Sparse Feature Interactions into Neural
Networks [3.7277730514654555]
決定木を用いて、関連する特徴とその相互作用をキャプチャし、抽出した関係をニューラルネットワークにエンコードするマッピングを定義する。
同時に、機能選択により、アートツリーベースのアプローチの状況と比較して、コンパクトな表現の学習が可能になる。
論文 参考訳(メタデータ) (2020-02-11T11:22:20Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。