論文の概要: SelfORE: Self-supervised Relational Feature Learning for Open Relation
Extraction
- arxiv url: http://arxiv.org/abs/2004.02438v2
- Date: Tue, 6 Oct 2020 12:32:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 05:24:13.066828
- Title: SelfORE: Self-supervised Relational Feature Learning for Open Relation
Extraction
- Title(参考訳): SelfORE:オープンな関係抽出のための自己教師付き関係特徴学習
- Authors: Xuming Hu, Chenwei Zhang, Yusong Xu, Lijie Wen, Philip S. Yu
- Abstract要約: オープンドメイン関係抽出は、自然言語文からオープンドメイン関係事実を抽出するタスクである。
弱い自己教師型信号を利用する自己教師型フレームワークであるSelfOREを提案する。
3つのデータセットの実験結果は、SelfOREの有効性とロバスト性を示している。
- 参考スコア(独自算出の注目度): 60.08464995629325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open relation extraction is the task of extracting open-domain relation facts
from natural language sentences. Existing works either utilize heuristics or
distant-supervised annotations to train a supervised classifier over
pre-defined relations, or adopt unsupervised methods with additional
assumptions that have less discriminative power. In this work, we proposed a
self-supervised framework named SelfORE, which exploits weak, self-supervised
signals by leveraging large pretrained language model for adaptive clustering
on contextualized relational features, and bootstraps the self-supervised
signals by improving contextualized features in relation classification.
Experimental results on three datasets show the effectiveness and robustness of
SelfORE on open-domain Relation Extraction when comparing with competitive
baselines.
- Abstract(参考訳): オープンリレーション抽出は、自然言語文からオープンドメイン関係事実を抽出するタスクである。
既存の著作では、ヒューリスティックスや遠隔教師付きアノテーションを使用して、事前定義された関係性よりも教師付き分類器を訓練するか、または差別力の少ない追加の仮定で教師なしの手法を採用する。
本研究では,文脈付き関係特徴の適応クラスタリングに大規模事前学習言語モデルを活用することで,弱い自己教師付き信号を利用する自己教師型フレームワークであるSelfOREを提案し,関係分類における文脈付き特徴を改善することで自己教師型信号のブートストラップを行う。
3つのデータセットの実験結果から,オープンドメイン関係抽出におけるSelfOREの有効性とロバスト性を示した。
関連論文リスト
- Siamese Representation Learning for Unsupervised Relation Extraction [5.776369192706107]
非教師付き関係抽出(URE)は、オープンドメインのプレーンテキストから名前付きエンティティペア間の基礎となる関係を見つけることを目的としている。
比較学習を利用した既存のUREモデルでは、正のサンプルを惹きつけ、より良い分離を促進するために負のサンプルを反発させる効果がある。
非教師関係抽出のためのシームズ表現学習 - 正のペアを単純に活用して表現学習を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-01T02:57:43Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
本研究で得られたCGDIALOGコーパスに基づくオープンドメイン応答生成モデルのスプリアス相関に関する最初の研究を行った。
因果探索アルゴリズムに着想を得て,反応生成モデルの学習と推論のための新しいモデル非依存手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T06:33:48Z) - HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised
Relation Extraction [60.80849503639896]
非教師なし関係抽出は、関係範囲や分布に関する事前情報のない自然言語文からエンティティ間の関係を抽出することを目的としている。
本稿では,階層間注目を用いた階層的特徴空間から階層的信号を導出する機能を持つ,HiUREという新しいコントラスト学習フレームワークを提案する。
2つの公開データセットの実験結果は、最先端モデルと比較した場合の教師なし関係抽出におけるHiUREの有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-05-04T17:56:48Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Element Intervention for Open Relation Extraction [27.408443348900057]
OpenREは、同じ基盤となる関係を参照する関係インスタンスをクラスタ化することを目的としている。
現在のOpenREモデルは、一般的に遠隔監視から生成されたデータセットに基づいてトレーニングされている。
本稿では,OpenREの手順を因果的観点から再考する。
論文 参考訳(メタデータ) (2021-06-17T14:37:13Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - Clustering-based Unsupervised Generative Relation Extraction [3.342376225738321]
クラスタリングに基づく教師なし生成関係抽出フレームワーク(CURE)を提案する。
我々は「エンコーダ・デコーダ」アーキテクチャを用いて自己教師付き学習を行い、エンコーダが関係情報を抽出できるようにする。
我々のモデルは、ニューヨーク・タイムズ(NYT)と国連並列コーパス(UNPC)の標準データセットにおいて、最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2020-09-26T20:36:40Z) - Self-Supervised Relational Reasoning for Representation Learning [5.076419064097733]
自己教師型学習では、ラベルのないデータに対して代替ターゲットを定義することにより、代理目的を達成することを課題とする。
本稿では,学習者が無ラベルデータに暗黙的な情報から信号をブートストラップできる,新たな自己教師型関係推論法を提案する。
提案手法は,標準データセット,プロトコル,バックボーンを用いて,厳密な実験手順に従って評価する。
論文 参考訳(メタデータ) (2020-06-10T14:24:25Z) - Relabel the Noise: Joint Extraction of Entities and Relations via
Cooperative Multiagents [52.55119217982361]
協調型マルチエージェント群を用いて,雑音の多いインスタンスを処理するための共同抽出手法を提案する。
ノイズの多いインスタンスをきめ細かな方法で処理するために、協調グループの各エージェントは、自身の視点で連続的な信頼スコアを算出してインスタンスを評価する。
信頼度コンセンサスモジュールは、すべてのエージェントの知恵を収集し、信頼度ラベル付きラベルでノイズの多いトレーニングセットを再分割するように設計されている。
論文 参考訳(メタデータ) (2020-04-21T12:03:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。