論文の概要: Verifying Recurrent Neural Networks using Invariant Inference
- arxiv url: http://arxiv.org/abs/2004.02462v2
- Date: Mon, 10 Aug 2020 08:38:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 07:22:58.784240
- Title: Verifying Recurrent Neural Networks using Invariant Inference
- Title(参考訳): 不変推論を用いた繰り返しニューラルネットワークの検証
- Authors: Yuval Jacoby, Clark Barrett, Guy Katz
- Abstract要約: 本稿では,リカレントニューラルネットワーク(Recurrent Neural Network)と呼ばれる,ニューラルネットワークの多種多様な特性を検証するための新しいアプローチを提案する。
この手法は不変量の推論に基づいており、再帰的ネットワークを単純かつ非再帰的な問題に検証する際の複雑な問題を軽減できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are revolutionizing the way complex systems are
developed. However, these automatically-generated networks are opaque to
humans, making it difficult to reason about them and guarantee their
correctness. Here, we propose a novel approach for verifying properties of a
widespread variant of neural networks, called recurrent neural networks.
Recurrent neural networks play a key role in, e.g., natural language
processing, and their verification is crucial for guaranteeing the reliability
of many critical systems. Our approach is based on the inference of invariants,
which allow us to reduce the complex problem of verifying recurrent networks
into simpler, non-recurrent problems. Experiments with a proof-of-concept
implementation of our approach demonstrate that it performs orders-of-magnitude
better than the state of the art.
- Abstract(参考訳): ディープニューラルネットワークは、複雑なシステムの開発方法に革命をもたらしている。
しかし、これらの自動生成ネットワークは人間には不透明であり、それらを推論し、その正確性を保証することは困難である。
本稿では,リカレントニューラルネットワークと呼ばれる広範に分布するニューラルネットワークの特性を検証する新しい手法を提案する。
リカレントニューラルネットワークは自然言語処理などにおいて重要な役割を担い、その検証は多くの重要なシステムの信頼性を保証するために不可欠である。
この手法は不変量の推論に基づいており、再帰的ネットワークを単純で非再帰的な問題に検証する複雑な問題を軽減できる。
本手法の概念実証による実験により,本手法は最先端技術よりも桁違いに優れた性能を示す。
関連論文リスト
- Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
自己回帰型ニューラルネットワーク、畳み込み型ニューラルネットワーク、リカレントニューラルネットワーク、グラフニューラルネットワークなど、多くのディープニューラルネットワークがIsingモデルの解決に使用されている。
本稿では、スピン変数間の相互作用を効果的に活用できるメッセージパッシング機構を備えた変分自己回帰アーキテクチャを提案する。
新しいネットワークは、アニーリングフレームワークの下で訓練され、いくつかの原型スピンハミルトニアンの解法、特に低温での大きなスピン系において、既存の方法よりも優れている。
論文 参考訳(メタデータ) (2024-04-09T11:27:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Fully Automatic Neural Network Reduction for Formal Verification [8.017543518311196]
到達可能性解析を用いたニューラルネットワークの完全自動・音量低減手法を提案する。
音質は、低減されたネットワークの検証が元のネットワークの検証を必要とすることを保証します。
提案手法は, ニューロンの数を, 小さい外近似で, 元のニューロン数のごく一部に減らすことができることを示す。
論文 参考訳(メタデータ) (2023-05-03T07:13:47Z) - Certified Invertibility in Neural Networks via Mixed-Integer Programming [16.64960701212292]
ニューラルネットワークは敵の攻撃に弱いことが知られている。
ネットワークの決定に影響を与えない大きな、意味のある摂動が存在するかもしれない。
ニューラルネットワーク間の変換における可逆性検証に,我々の知見がどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-27T15:40:38Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Building Compact and Robust Deep Neural Networks with Toeplitz Matrices [93.05076144491146]
この論文は、コンパクトで、訓練が容易で、信頼性があり、敵の例に対して堅牢なニューラルネットワークを訓練する問題に焦点を当てている。
Toeplitzファミリーの構造化行列の特性を利用して、コンパクトでセキュアなニューラルネットワークを構築する。
論文 参考訳(メタデータ) (2021-09-02T13:58:12Z) - Thinking Deeply with Recurrence: Generalizing from Easy to Hard
Sequential Reasoning Problems [51.132938969015825]
我々は、リカレントネットワークは、非リカレントディープモデルの振る舞いを詳細にエミュレートする能力を有することを観察する。
再帰ステップの少ない単純な迷路を解くように訓練された再帰ネットワークは、推論中に追加の繰り返しを実行するだけで、より複雑な問題を解決することができる。
論文 参考訳(メタデータ) (2021-02-22T14:09:20Z) - Provably Training Neural Network Classifiers under Fairness Constraints [70.64045590577318]
過パラメータのニューラルネットワークが制約を満たしていることを示す。
公平なニューラルネットワーク分類器を構築する上で重要な要素は、ニューラルネットワークの非応答解析を確立することである。
論文 参考訳(メタデータ) (2020-12-30T18:46:50Z) - Towards Repairing Neural Networks Correctly [6.600380575920419]
本稿では,ニューラルネットワークの正確性を保証するための実行時検証手法を提案する。
実験結果から,本手法は特性を満たすことが保証されたニューラルネットワークを効果的に生成することが示された。
論文 参考訳(メタデータ) (2020-12-03T12:31:07Z) - Implicit recurrent networks: A novel approach to stationary input
processing with recurrent neural networks in deep learning [0.0]
本研究では,ニューラルネットの新たな実装を深層学習に導入し,検証する。
繰り返しネットワークの暗黙的な実装にバックプロパゲーションアルゴリズムを実装するアルゴリズムを提案する。
シングルレイヤの暗黙的リカレントネットワークはXOR問題を解くことができ、一方、単調に活性化関数が増加するフィードフォワードネットワークは、このタスクで失敗する。
論文 参考訳(メタデータ) (2020-10-20T18:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。