論文の概要: Differential 3D Facial Recognition: Adding 3D to Your State-of-the-Art
2D Method
- arxiv url: http://arxiv.org/abs/2004.03385v1
- Date: Fri, 3 Apr 2020 20:17:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 03:42:29.910213
- Title: Differential 3D Facial Recognition: Adding 3D to Your State-of-the-Art
2D Method
- Title(参考訳): 顔の3D認識:最先端2D法に3Dを加える
- Authors: J. Matias Di Martino, Fernando Suzacq, Mauricio Delbracio, Qiang Qiu,
and Guillermo Sapiro
- Abstract要約: 能動照明を応用して最先端の2D顔認証手法を3次元特徴量で拡張できることが示唆された。
提案手法は顔認識性能を大幅に向上させ,スプーフィング攻撃に対するロバスト性を劇的に向上させる。
- 参考スコア(独自算出の注目度): 90.26041504667451
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Active illumination is a prominent complement to enhance 2D face recognition
and make it more robust, e.g., to spoofing attacks and low-light conditions. In
the present work we show that it is possible to adopt active illumination to
enhance state-of-the-art 2D face recognition approaches with 3D features, while
bypassing the complicated task of 3D reconstruction. The key idea is to project
over the test face a high spatial frequency pattern, which allows us to
simultaneously recover real 3D information plus a standard 2D facial image.
Therefore, state-of-the-art 2D face recognition solution can be transparently
applied, while from the high frequency component of the input image,
complementary 3D facial features are extracted. Experimental results on ND-2006
dataset show that the proposed ideas can significantly boost face recognition
performance and dramatically improve the robustness to spoofing attacks.
- Abstract(参考訳): アクティブ照明は、2D顔認証を強化し、例えば、スプーフィング攻撃や低照度条件に対してより堅牢にするための顕著な補体である。
本研究は,3次元再構成の複雑なタスクを回避しつつ,最先端の2次元顔認証アプローチを3次元特徴で強化するために,能動的照明を適用可能であることを示す。
重要なアイデアは、テスト面に高い空間周波数パターンを投影することで、実際の3d情報と標準の2d顔画像を同時に復元することです。
したがって、入力画像の高周波成分から相補的な3D顔特徴を抽出しながら、最先端2D顔認識ソリューションを透過的に適用することができる。
ND-2006データセットによる実験結果から,提案手法は顔認識性能を大幅に向上し,スプーフィング攻撃に対するロバスト性を劇的に向上させることが示された。
関連論文リスト
- Fake It Without Making It: Conditioned Face Generation for Accurate 3D
Face Reconstruction [5.079602839359523]
本稿では,250Kのフォトリアリスティック画像とそれに対応する形状パラメータと深度マップの大規模な合成データセットを生成する手法について述べる。
人間の顔のFLAME 3D Morphable Model(3DMM)から採取した深度マップ上での安定拡散条件により,人種と性別のバランスがとれるようにデザインされた多様な形状の顔画像を生成することができる。
我々は、3Dの監督や手動の3Dアセット作成を必要とせずに、NoWベンチマーク上での競合性能を実現する、SynthFaceでトレーニングされたディープニューラルネットワークであるControlFaceを提案する。
論文 参考訳(メタデータ) (2023-07-25T16:42:06Z) - Improving 2D face recognition via fine-level facial depth generation and
RGB-D complementary feature learning [0.8223798883838329]
顔深度生成ネットワークと改良されたマルチモーダル補完特徴学習ネットワークを提案する。
Lock3DFaceデータセットとIIIT-Dデータセットの実験は、提案したFFDGNetとI MCFLNetがRGB-D顔認識の精度を向上させることを示した。
論文 参考訳(メタデータ) (2023-05-08T02:33:59Z) - Towards Realistic Generative 3D Face Models [41.574628821637944]
本稿では,高品質なアルベドと精密な3次元形状を生成するために,3次元制御可能な顔モデルを提案する。
2次元顔生成モデルとセマンティック顔操作を組み合わせることで、詳細な3次元顔の編集を可能にする。
論文 参考訳(メタデータ) (2023-04-24T22:47:52Z) - Generating 2D and 3D Master Faces for Dictionary Attacks with a
Network-Assisted Latent Space Evolution [68.8204255655161]
マスターフェイス(英: master face)とは、人口の比率の高い顔認証をパスする顔画像である。
2次元および3次元の顔認証モデルに対して,これらの顔の最適化を行う。
3Dでは,2次元スタイルGAN2ジェネレータを用いて顔を生成し,深部3次元顔再構成ネットワークを用いて3次元構造を予測する。
論文 参考訳(メタデータ) (2022-11-25T09:15:38Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
カメラ空間における光マーチング (RiCS) は、3次元における前景物体の自己閉塞を2次元の自己閉塞マップに表現する新しい手法である。
表現マップは画像の質を高めるだけでなく,時間的コヒーレントな複雑な影効果をモデル化できることを示す。
論文 参考訳(メタデータ) (2022-05-14T05:35:35Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
そこで本研究では,レンダリング可能な3次元顔形状とBRDFの再構成を,単一の"in-the-wild"画像から実現した最初の手法を提案する。
本手法は,1枚の低解像度画像から,高解像度の3次元顔の再構成を行う。
論文 参考訳(メタデータ) (2021-12-11T11:36:30Z) - Reconstructing A Large Scale 3D Face Dataset for Deep 3D Face
Identification [9.159921061636695]
本稿では,2次元支援型深部3次元顔認証の枠組みを提案する。
特に,大規模な2次元顔データベースから数百万の3次元顔スキャンを再構築することを提案する。
提案手法はFRGC v2.0, Bosphorus, BU-3DFEの3次元顔データベース上で, 最先端のランク1スコアを実現する。
論文 参考訳(メタデータ) (2020-10-16T13:48:38Z) - Face Super-Resolution Guided by 3D Facial Priors [92.23902886737832]
シャープな顔構造を把握した3次元顔先行情報を明示的に組み込んだ新しい顔超解像法を提案する。
我々の研究は、顔属性のパラメトリック記述の融合に基づく3次元形態的知識を初めて探求したものである。
提案した3D先行画像は、最先端技術よりも優れた顔超解像結果が得られる。
論文 参考訳(メタデータ) (2020-07-18T15:26:07Z) - Adaptive 3D Face Reconstruction from a Single Image [45.736818498242016]
1枚の画像から3次元の顔形状を適応的に再構成する新しい関節2Dと3Dの最適化法を提案する。
複数のデータセットに対する実験結果から,本手法は1枚のカラー画像から高品質な再構成を実現できることが示された。
論文 参考訳(メタデータ) (2020-07-08T09:35:26Z) - DeepFaceFlow: In-the-wild Dense 3D Facial Motion Estimation [56.56575063461169]
DeepFaceFlowは、3D非剛体顔の流れを推定するための堅牢で高速で高精度なフレームワークである。
私たちのフレームワークは、2つの非常に大規模な顔ビデオデータセットでトレーニングされ、テストされました。
登録された画像に対して,60fpsで3次元フローマップを生成する。
論文 参考訳(メタデータ) (2020-05-14T23:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。