論文の概要: Learning Fairer Representations with FairVIC
- arxiv url: http://arxiv.org/abs/2404.18134v2
- Date: Mon, 03 Feb 2025 12:49:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:08:21.331830
- Title: Learning Fairer Representations with FairVIC
- Title(参考訳): FairVICによるフェアア表現の学習
- Authors: Charmaine Barker, Daniel Bethell, Dimitar Kazakov,
- Abstract要約: 自動意思決定システムにおけるバイアスの緩和は、公平さとデータセット固有のバイアスのニュアンスな定義のために重要な課題である。
学習中の損失関数に分散項、不変項、共分散項を統合することにより、ニューラルネットワークの公平性を高める革新的なアプローチであるFairVICを導入する。
ベンチマークデータセットにおけるFairVICを,グループと個人の両方の公正性を考慮して比較して評価し,精度と公正性のトレードオフに関するアブレーション研究を行う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Mitigating bias in automated decision-making systems, particularly in deep learning models, is a critical challenge due to nuanced definitions of fairness, dataset-specific biases, and the inherent trade-off between fairness and accuracy. To address these issues, we introduce FairVIC, an innovative approach that enhances fairness in neural networks by integrating variance, invariance, and covariance terms into the loss function during training. Unlike methods that rely on predefined fairness criteria, FairVIC abstracts fairness concepts to minimise dependency on protected characteristics. We evaluate FairVIC against comparable bias mitigation techniques on benchmark datasets, considering both group and individual fairness, and conduct an ablation study on the accuracy-fairness trade-off. FairVIC demonstrates significant improvements ($\approx70\%$) in fairness across all tested metrics without compromising accuracy, thus offering a robust, generalisable solution for fair deep learning across diverse tasks and datasets.
- Abstract(参考訳): 自動意思決定システムにおけるバイアス、特にディープラーニングモデルにおけるバイアスの緩和は、公正性、データセット固有のバイアス、公正性と正確性の間の固有のトレードオフによって、重要な課題である。
このような問題に対処するために、トレーニング中の損失関数に分散、不変、共分散項を統合することにより、ニューラルネットワークの公平性を高める革新的なアプローチであるFairVICを導入する。
事前定義された公平性基準に依存する方法とは異なり、FairVICは公正性の概念を抽象化し、保護された特性への依存を最小限に抑える。
ベンチマークデータセットにおけるFairVICを,グループと個人の両方の公正性を考慮して比較して評価し,精度と公正性のトレードオフに関するアブレーション研究を行う。
FairVICは、すべてのテストメトリクスに対して、精度を損なうことなく、フェアネスにおいて大幅な改善($\approx70\%$)を示し、多様なタスクやデータセットをまたいだ公正なディープラーニングのための堅牢で汎用的なソリューションを提供する。
関連論文リスト
- Understanding trade-offs in classifier bias with quality-diversity optimization: an application to talent management [2.334978724544296]
公正なAIモデルを開発する上での大きな課題は、そのようなモデルをトレーニングする上で利用可能なデータのバイアスにある。
本稿では,データセットに固有のバイアスを可視化し,公平性と正確性の間の潜在的なトレードオフを理解する方法を提案する。
論文 参考訳(メタデータ) (2024-11-25T22:14:02Z) - Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
バイアスを緩和する現在の方法は、情報損失と精度と公平性のバランスが不十分であることが多い。
本稿では,二段階最適化の原理に基づく新しい手法を提案する。
私たちのディープラーニングベースのアプローチは、正確性と公平性の両方を同時に最適化します。
論文 参考訳(メタデータ) (2024-10-21T18:53:39Z) - Achievable Fairness on Your Data With Utility Guarantees [16.78730663293352]
機械学習の公平性において、異なるセンシティブなグループ間の格差を最小限に抑えるトレーニングモデルは、しばしば精度を低下させる。
本稿では,各データセットに適合する公平性-正確性トレードオフ曲線を近似する計算効率のよい手法を提案する。
そこで我々は,モデルフェアネスを監査するための堅牢な枠組みを実践者に提供し,評価の不確実性を定量化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-27T00:59:32Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
バッチ正規化をセンシティブ属性に適応させるFairAdaBNを提案する。
本研究では,FATE(Fairness-Accuracy Trade-off efficiency)と呼ばれる新しい指標を提案する。
2つの皮膚科学データセットを用いた実験により,提案手法はフェアネス基準とFATEの他の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T02:22:07Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Fair Inference for Discrete Latent Variable Models [12.558187319452657]
デュエルケアなしでデータに基づいて訓練された機械学習モデルは、特定の人口に対して不公平で差別的な行動を示すことが多い。
本研究では,変動分布に公平なペナルティを含む離散潜伏変数に対して,公平な変分推論手法を開発した。
提案手法の一般化と実世界への影響の可能性を示すため,刑事司法リスク評価のための特別目的グラフィカルモデルを構築した。
論文 参考訳(メタデータ) (2022-09-15T04:54:21Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
信頼性正則化という新しいデバイアス化手法を導入する。
モデルがバイアスを悪用するのを防ぐと同時に、トレーニングのすべての例から学ぶのに十分なインセンティブを得られるようにします。
提案手法を3つのNLUタスクで評価し,前者とは対照的に,アウト・オブ・ディストリビューション・データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2020-05-01T11:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。