論文の概要: Learning Fairer Representations with FairVIC
- arxiv url: http://arxiv.org/abs/2404.18134v2
- Date: Mon, 03 Feb 2025 12:49:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:08:21.331830
- Title: Learning Fairer Representations with FairVIC
- Title(参考訳): FairVICによるフェアア表現の学習
- Authors: Charmaine Barker, Daniel Bethell, Dimitar Kazakov,
- Abstract要約: 自動意思決定システムにおけるバイアスの緩和は、公平さとデータセット固有のバイアスのニュアンスな定義のために重要な課題である。
学習中の損失関数に分散項、不変項、共分散項を統合することにより、ニューラルネットワークの公平性を高める革新的なアプローチであるFairVICを導入する。
ベンチマークデータセットにおけるFairVICを,グループと個人の両方の公正性を考慮して比較して評価し,精度と公正性のトレードオフに関するアブレーション研究を行う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Mitigating bias in automated decision-making systems, particularly in deep learning models, is a critical challenge due to nuanced definitions of fairness, dataset-specific biases, and the inherent trade-off between fairness and accuracy. To address these issues, we introduce FairVIC, an innovative approach that enhances fairness in neural networks by integrating variance, invariance, and covariance terms into the loss function during training. Unlike methods that rely on predefined fairness criteria, FairVIC abstracts fairness concepts to minimise dependency on protected characteristics. We evaluate FairVIC against comparable bias mitigation techniques on benchmark datasets, considering both group and individual fairness, and conduct an ablation study on the accuracy-fairness trade-off. FairVIC demonstrates significant improvements ($\approx70\%$) in fairness across all tested metrics without compromising accuracy, thus offering a robust, generalisable solution for fair deep learning across diverse tasks and datasets.
- Abstract(参考訳): 自動意思決定システムにおけるバイアス、特にディープラーニングモデルにおけるバイアスの緩和は、公正性、データセット固有のバイアス、公正性と正確性の間の固有のトレードオフによって、重要な課題である。
このような問題に対処するために、トレーニング中の損失関数に分散、不変、共分散項を統合することにより、ニューラルネットワークの公平性を高める革新的なアプローチであるFairVICを導入する。
事前定義された公平性基準に依存する方法とは異なり、FairVICは公正性の概念を抽象化し、保護された特性への依存を最小限に抑える。
ベンチマークデータセットにおけるFairVICを,グループと個人の両方の公正性を考慮して比較して評価し,精度と公正性のトレードオフに関するアブレーション研究を行う。
FairVICは、すべてのテストメトリクスに対して、精度を損なうことなく、フェアネスにおいて大幅な改善($\approx70\%$)を示し、多様なタスクやデータセットをまたいだ公正なディープラーニングのための堅牢で汎用的なソリューションを提供する。
関連論文リスト
- Achievable Fairness on Your Data With Utility Guarantees [16.78730663293352]
機械学習の公平性において、異なるセンシティブなグループ間の格差を最小限に抑えるトレーニングモデルは、しばしば精度を低下させる。
本稿では,各データセットに適合する公平性-正確性トレードオフ曲線を近似する計算効率のよい手法を提案する。
そこで我々は,モデルフェアネスを監査するための堅牢な枠組みを実践者に提供し,評価の不確実性を定量化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-27T00:59:32Z) - Multi-dimensional Fair Federated Learning [25.07463977553212]
フェデレートラーニング(FL)は、分散データからモデルをトレーニングするための、有望な協調的でセキュアなパラダイムとして登場した。
群フェアネスとクライアントフェアネスは、FLにとって重要である2次元のフェアネスである。
グループフェアネスとクライアントフェアネスを同時に達成するために,mFairFLと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-12-09T11:37:30Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Learning Fair Classifiers via Min-Max F-divergence Regularization [13.81078324883519]
公平な分類モデルを学ぶための新しい min-max F-divergence regularization フレームワークを提案する。
F分割測度は凸性と微分可能性特性を有することを示す。
提案手法は, 精度と公平性のトレードオフに関して, 最先端の性能を実現するものであることを示す。
論文 参考訳(メタデータ) (2023-06-28T20:42:04Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
バッチ正規化をセンシティブ属性に適応させるFairAdaBNを提案する。
本研究では,FATE(Fairness-Accuracy Trade-off efficiency)と呼ばれる新しい指標を提案する。
2つの皮膚科学データセットを用いた実験により,提案手法はフェアネス基準とFATEの他の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T02:22:07Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
多変量時系列予測モデル(MTS)では変数間の性能不公平性が広く存在する。
フェアネスを意識したMTS予測のための新しいフレームワークであるFairForを提案する。
論文 参考訳(メタデータ) (2023-01-27T04:54:12Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
グループフェアネス(グループフェアネス、英: Group Fairness)とは、個人の異なる集団が保護された属性によってどのように異なる扱いを受けるかを測定するフェアネスの概念のクラスである。
グループフェアネスにおけるこれらのトレードオフを体系的に評価できる一般的な診断法を提案する。
論文 参考訳(メタデータ) (2020-04-07T14:15:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。