論文の概要: Bayes-Optimal Fair Classification with Multiple Sensitive Features
- arxiv url: http://arxiv.org/abs/2505.00631v1
- Date: Thu, 01 May 2025 16:12:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.369858
- Title: Bayes-Optimal Fair Classification with Multiple Sensitive Features
- Title(参考訳): 複数の感性特徴を持つベイズ最適フェア分類
- Authors: Yi Yang, Yinghui Huang, Xiangyu Chang,
- Abstract要約: 一般の近似公正度測定において,複数の感度特徴に対してベイズ最適フェア分類器を特徴付ける。
デモグラフィックパリティを含む既存の群フェアネス概念に対するこれらの近似測度は、特定の群の選択率の線形変換であることを示す。
我々のフレームワークは属性認識と属性盲の設定の両方に適用でき、Equalized Oddsのような複合フェアネスの概念に対応できる。
- 参考スコア(独自算出の注目度): 24.42403136889636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing theoretical work on Bayes-optimal fair classifiers usually considers a single (binary) sensitive feature. In practice, individuals are often defined by multiple sensitive features. In this paper, we characterize the Bayes-optimal fair classifier for multiple sensitive features under general approximate fairness measures, including mean difference and mean ratio. We show that these approximate measures for existing group fairness notions, including Demographic Parity, Equal Opportunity, Predictive Equality, and Accuracy Parity, are linear transformations of selection rates for specific groups defined by both labels and sensitive features. We then characterize that Bayes-optimal fair classifiers for multiple sensitive features become instance-dependent thresholding rules that rely on a weighted sum of these group membership probabilities. Our framework applies to both attribute-aware and attribute-blind settings and can accommodate composite fairness notions like Equalized Odds. Building on this, we propose two practical algorithms for Bayes-optimal fair classification via in-processing and post-processing. We show empirically that our methods compare favorably to existing methods.
- Abstract(参考訳): ベイズ最適公正分類器に関する既存の理論的研究は、通常、単一の(二項)敏感な特徴を考える。
実際には、個人はしばしば複数の敏感な特徴によって定義される。
本稿では、平均差と平均比を含む一般の近似公正度尺度の下で、複数の感度特徴に対するベイズ最適フェア分類器を特徴付ける。
従来のグループフェアネスの概念(例えば、デモグラフィックパリティ(英語版)、平等(英語版)、予測平等(英語版)、正確パリティ(英語版))は、ラベルとセンシティブな特徴の両方で定義される特定のグループに対する選択率の線形変換であることを示す。
次に、複数の敏感な特徴に対するベイズ最適公正分類器が、これらのグループメンバーシップ確率の重み付け和に依存する、インスタンス依存のしきい値規則となることを特徴付ける。
我々のフレームワークは属性認識と属性盲の設定の両方に適用でき、Equalized Oddsのような複合フェアネスの概念に対応できる。
そこで本研究では,ベイズ最適公正分類のための2つの実践的アルゴリズムを内処理と後処理により提案する。
提案手法が既存手法と良好に比較できることを実証的に示す。
関連論文リスト
- Bayes-Optimal Fair Classification with Linear Disparity Constraints via
Pre-, In-, and Post-processing [32.5214395114507]
与えられた群フェアネス制約に対する分類誤差を最小限に抑えるため,ベイズ最適公正分類法を開発した。
人口格差、機会平等、予測平等からの逸脱など、いくつかの一般的な格差対策が双線形であることを示します。
本手法は, ほぼ最適フェアネス精度のトレードオフを達成しつつ, 相違を直接制御する。
論文 参考訳(メタデータ) (2024-02-05T08:59:47Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
現実世界に展開された機械学習アルゴリズムが不公平さや意図しない社会的結果をもたらすことはないことを保証することが重要である。
本稿では,カーネルHilbert Spacesの相互共分散演算子上に構築されたフェアネス尺度であるFairCOCCOを紹介する。
実世界のデータセットにおける予測能力と公正性のバランスをとる上で、最先端技術に対する一貫した改善を実証的に示す。
論文 参考訳(メタデータ) (2022-11-11T11:28:46Z) - Fairness via Adversarial Attribute Neighbourhood Robust Learning [49.93775302674591]
本稿では,分類ヘッドを損なうために,UnderlineRobust underlineAdversarial underlineAttribute underlineNeighbourhood (RAAN)損失を原則として提案する。
論文 参考訳(メタデータ) (2022-10-12T23:39:28Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Fair Tree Learning [0.15229257192293202]
様々な最適化基準は、分類性能と公正度を組み合わせている。
現在の公正決定木法は、分類タスクと公正度測定の両方において、一定の閾値を最適化するのみである。
そこで本研究では,一様人口分布パリティと呼ばれるしきい値非依存の公平度尺度と,SCAFF – Splitting Criterion AUC for Fairnessと題する分割基準を提案する。
論文 参考訳(メタデータ) (2021-10-18T13:40:25Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Addressing Fairness in Classification with a Model-Agnostic
Multi-Objective Algorithm [33.145522561104464]
分類における公平性の目標は、人種や性別などのセンシティブな属性に基づいて個人のグループを識別しない分類器を学習することである。
公正アルゴリズムを設計する1つのアプローチは、公正の概念の緩和を正規化項として使うことである。
我々はこの性質を利用して、既存の緩和よりも証明可能な公正の概念を近似する微分可能な緩和を定義する。
論文 参考訳(メタデータ) (2020-09-09T17:40:24Z) - Fairness with Overlapping Groups [15.154984899546333]
標準的なゴールは、複数の重なり合うグループ間での公平度メトリクスの平等を保証することである。
本稿では、確率論的人口分析を用いて、この標準公正分類問題を再考する。
提案手法は,既存のグループフェア分類手法を統一し,様々な非分解性性能指標と公正度尺度の拡張を可能にする。
論文 参考訳(メタデータ) (2020-06-24T05:01:10Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
グループフェアネス(グループフェアネス、英: Group Fairness)とは、個人の異なる集団が保護された属性によってどのように異なる扱いを受けるかを測定するフェアネスの概念のクラスである。
グループフェアネスにおけるこれらのトレードオフを体系的に評価できる一般的な診断法を提案する。
論文 参考訳(メタデータ) (2020-04-07T14:15:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。