A general framework for inference on algorithm-agnostic variable
importance
- URL: http://arxiv.org/abs/2004.03683v2
- Date: Mon, 13 Sep 2021 23:37:30 GMT
- Title: A general framework for inference on algorithm-agnostic variable
importance
- Authors: Brian D. Williamson, Peter B. Gilbert, Noah R. Simon, Marco Carone
- Abstract summary: We propose a framework for non inference on interpretable algorithm-agnostic variable importance.
We show that our proposal has good operating characteristics, and we illustrate it with data from a study of an antibody against HIV-1 infection.
- Score: 3.441021278275805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many applications, it is of interest to assess the relative contribution
of features (or subsets of features) toward the goal of predicting a response
-- in other words, to gauge the variable importance of features. Most recent
work on variable importance assessment has focused on describing the importance
of features within the confines of a given prediction algorithm. However, such
assessment does not necessarily characterize the prediction potential of
features, and may provide a misleading reflection of the intrinsic value of
these features. To address this limitation, we propose a general framework for
nonparametric inference on interpretable algorithm-agnostic variable
importance. We define variable importance as a population-level contrast
between the oracle predictiveness of all available features versus all features
except those under consideration. We propose a nonparametric efficient
estimation procedure that allows the construction of valid confidence
intervals, even when machine learning techniques are used. We also outline a
valid strategy for testing the null importance hypothesis. Through simulations,
we show that our proposal has good operating characteristics, and we illustrate
its use with data from a study of an antibody against HIV-1 infection.
Related papers
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Factor Importance Ranking and Selection using Total Indices [0.0]
A factor importance measure ought to characterize the feature's predictive potential without relying on a specific prediction algorithm.
We present the equivalence between predictiveness potential and total Sobol' indices from global sensitivity analysis.
We introduce a novel consistent estimator that can be directly estimated from noisy data.
arXiv Detail & Related papers (2024-01-01T16:02:06Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - A Dual-Perspective Approach to Evaluating Feature Attribution Methods [40.73602126894125]
We propose two new perspectives within the faithfulness paradigm that reveal intuitive properties: soundness and completeness.
Soundness assesses the degree to which attributed features are truly predictive features, while completeness examines how well the resulting attribution reveals all the predictive features.
We apply these metrics to mainstream attribution methods, offering a novel lens through which to analyze and compare feature attribution methods.
arXiv Detail & Related papers (2023-08-17T12:41:04Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Demand Forecasting of Individual Probability Density Functions with
Machine Learning [0.0]
This work proposes new techniques for assessing the accuracy of predicted distributions.
Using the supervised machine learning method "Cyclic Boosting", complete individual probability density functions can be predicted such that each prediction is fully explainable.
arXiv Detail & Related papers (2020-09-15T13:05:05Z) - Towards a More Reliable Interpretation of Machine Learning Outputs for
Safety-Critical Systems using Feature Importance Fusion [0.0]
We introduce a novel fusion metric and compare it to the state-of-the-art.
Our approach is tested on synthetic data, where the ground truth is known.
Results show that our feature importance ensemble Framework overall produces 15% less feature importance error compared to existing methods.
arXiv Detail & Related papers (2020-09-11T15:51:52Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
arXiv Detail & Related papers (2020-08-14T16:48:29Z) - Combining Task Predictors via Enhancing Joint Predictability [53.46348489300652]
We present a new predictor combination algorithm that improves the target by i) measuring the relevance of references based on their capabilities in predicting the target, and ii) strengthening such estimated relevance.
Our algorithm jointly assesses the relevance of all references by adopting a Bayesian framework.
Based on experiments on seven real-world datasets from visual attribute ranking and multi-class classification scenarios, we demonstrate that our algorithm offers a significant performance gain and broadens the application range of existing predictor combination approaches.
arXiv Detail & Related papers (2020-07-15T21:58:39Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
We establish a novel set of evaluation criteria for such feature based explanations by analysis.
We obtain new explanations that are loosely necessary and sufficient for a prediction.
We extend the explanation to extract the set of features that would move the current prediction to a target class.
arXiv Detail & Related papers (2020-05-31T05:52:05Z) - Understanding Global Feature Contributions With Additive Importance
Measures [14.50261153230204]
We explore the perspective of defining feature importance through the predictive power associated with each feature.
We introduce two notions of predictive power (model-based and universal) and formalize this approach with a framework of additive importance measures.
We then propose SAGE, a model-agnostic method that quantifies predictive power while accounting for feature interactions.
arXiv Detail & Related papers (2020-04-01T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.