論文の概要: Multi-Head Attention based Probabilistic Vehicle Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2004.03842v3
- Date: Sat, 4 Jul 2020 09:47:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 08:36:27.661692
- Title: Multi-Head Attention based Probabilistic Vehicle Trajectory Prediction
- Title(参考訳): 多頭部注意型確率的車両軌道予測
- Authors: Hayoung Kim, Dongchan Kim, Gihoon Kim, Jeongmin Cho and Kunsoo Huh
- Abstract要約: マルチヘッドアテンションに基づく簡単なエンコーダ・デコーダアーキテクチャを提案する。
提案モデルでは,複数の車両に対して並列に予測された軌道の分布を生成する。
- 参考スコア(独自算出の注目度): 10.905596145969223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents online-capable deep learning model for probabilistic
vehicle trajectory prediction. We propose a simple encoder-decoder architecture
based on multi-head attention. The proposed model generates the distribution of
the predicted trajectories for multiple vehicles in parallel. Our approach to
model the interactions can learn to attend to a few influential vehicles in an
unsupervised manner, which can improve the interpretability of the network. The
experiments using naturalistic trajectories at highway show the clear
improvement in terms of positional error on both longitudinal and lateral
direction.
- Abstract(参考訳): 本稿では,確率論的車両軌道予測のためのオンライン学習モデルを提案する。
マルチヘッドアテンションに基づく簡単なエンコーダデコーダアーキテクチャを提案する。
提案モデルは,複数車両の予測軌道分布を並列に生成する。
インタラクションをモデル化する我々のアプローチは、ネットワークの解釈可能性を改善するために、教師なしの方法で、少数の影響力のある車両への参加を学ぶことができる。
高速道路における自然性トラジェクタを用いた実験は, 縦方向と横方向の両方における位置誤差の観点から明らかに改善した。
関連論文リスト
- Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
本研究では,混合密度ネットワーク(MDN)を組み合わせた軌道予測フレームワークを提案する。
提案するフレームワークは、広範囲の車両軌道データセットに基づいてテストされる。
論文 参考訳(メタデータ) (2023-12-19T12:56:56Z) - Flexible Multi-Generator Model with Fused Spatiotemporal Graph for
Trajectory Prediction [2.1638817206926855]
軌道予測は、自動車レーダーシステムにおいて重要な役割を果たす。
将来の軌道上の分布を学習する能力を持つ生成的敵ネットワークは、分布外サンプルを予測する傾向がある。
本稿では,歩行者軌跡の社会的相互作用を捉え,不連結な変動をモデル化する軌道予測フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-06T02:46:05Z) - An End-to-End Vehicle Trajcetory Prediction Framework [3.7311680121118345]
将来の軌道の正確な予測は、以前の軌道に依存するだけでなく、近くの他の車両間の複雑な相互作用のシミュレーションにも依存する。
この問題に対処するために構築されたほとんどの最先端のネットワークは、軌跡をたどって容易に利用できると仮定している。
本稿では,生のビデオ入力を取り込み,将来の軌跡予測を出力する新しいエンドツーエンドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-19T15:42:03Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
道路員の将来の軌跡予測への伝統的なアプローチは、過去の軌跡を知ることに依存している。
この研究は、交差点で複数の車両の予測を行うために、現在の状態と意図された方向を知ることに依存する。
この情報を車両間で送るメッセージは、それぞれがより総合的な環境概要を提供する。
論文 参考訳(メタデータ) (2023-01-06T15:13:23Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
本稿では,トランジタブルグラフニューラルネットワーク(Transferable Graph Neural Network, T-GNN)フレームワークを提案する。
具体的には、ドメイン固有知識が減少する構造運動知識を探索するために、ドメイン不変GNNを提案する。
さらに,注目に基づく適応的知識学習モジュールを提案し,知識伝達のための詳細な個別レベルの特徴表現について検討した。
論文 参考訳(メタデータ) (2022-03-09T21:08:47Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Learning to Predict Vehicle Trajectories with Model-based Planning [43.27767693429292]
PRIME(Prediction with Model-based Planning)という新しいフレームワークを紹介します。
ニューラルネットワークを使ってシーンコンテキストをモデル化する最近の予測作業とは異なり、PRIMEは正確で実現可能な将来の軌道予測を生成するように設計されている。
我々のPRIMEは、不完全追跡下での予測精度、実現可能性、堅牢性において最先端の手法より優れています。
論文 参考訳(メタデータ) (2021-03-06T04:49:24Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。