論文の概要: Multiclass Classification via Class-Weighted Nearest Neighbors
- arxiv url: http://arxiv.org/abs/2004.04715v2
- Date: Mon, 4 May 2020 00:40:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 02:26:53.316005
- Title: Multiclass Classification via Class-Weighted Nearest Neighbors
- Title(参考訳): クラス重近辺のマルチクラス分類
- Authors: Justin Khim, Ziyu Xu and Shashank Singh
- Abstract要約: マルチクラス分類のためのk-アネレスト近傍アルゴリズムの統計特性について検討する。
我々は, 精度, クラス重み付きリスク, 均一誤差に基づいて, 上限値と最小値の下位境界を導出する。
- 参考スコア(独自算出の注目度): 10.509405690286176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study statistical properties of the k-nearest neighbors algorithm for
multiclass classification, with a focus on settings where the number of classes
may be large and/or classes may be highly imbalanced. In particular, we
consider a variant of the k-nearest neighbor classifier with non-uniform
class-weightings, for which we derive upper and minimax lower bounds on
accuracy, class-weighted risk, and uniform error. Additionally, we show that
uniform error bounds lead to bounds on the difference between empirical
confusion matrix quantities and their population counterparts across a set of
weights. As a result, we may adjust the class weights to optimize
classification metrics such as F1 score or Matthew's Correlation Coefficient
that are commonly used in practice, particularly in settings with imbalanced
classes. We additionally provide a simple example to instantiate our bounds and
numerical experiments.
- Abstract(参考訳): マルチクラス分類のためのk-nearest neighborsアルゴリズムの統計特性について検討し,クラス数が大きく,クラス数が非常に不均衡な設定に着目した。
特に、非一様クラス重み付けを持つk-アレスト近傍分類器の変種を考えると、精度、クラス重み付きリスク、一様誤差に基づいて上とミニマックスの下限を導出する。
さらに、一様誤差境界は、経験的混乱行列量とその集団の重みの集合における差に結びつくことを示す。
その結果、クラスウェイトを調整することで、F1スコアやマシューの相関係数などの分類指標を最適化することができる。
さらに、境界と数値実験をインスタンス化する簡単な例も提供します。
関連論文リスト
- Class Uncertainty: A Measure to Mitigate Class Imbalance [0.0]
授業の基数のみを考慮すると、クラス不均衡の原因となるすべての問題をカバーできるわけではない。
トレーニング事例の予測的不確実性の平均値として「クラス不確実性」を提案する。
また,SVCI-20は,クラスが同じ数のトレーニングサンプルを持つが,それらの硬さの点で異なる,新しいデータセットとしてキュレートする。
論文 参考訳(メタデータ) (2023-11-23T16:36:03Z) - Mitigating Word Bias in Zero-shot Prompt-based Classifiers [55.60306377044225]
一致したクラス先行は、オラクルの上界性能と強く相関していることを示す。
また,NLPタスクに対するプロンプト設定において,一貫したパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2023-09-10T10:57:41Z) - Generalization for multiclass classification with overparameterized
linear models [3.3434274586532515]
クラスが多すぎる限り、多クラス分類は二分分類のように振る舞うことが示される。
様々な技術的課題に加えて、二項分類設定との大きな違いは、クラス数が増加するにつれて、各クラスの正のトレーニング例がマルチクラス設定で比較的少ないことである。
論文 参考訳(メタデータ) (2022-06-03T05:52:43Z) - Divide-and-Conquer Hard-thresholding Rules in High-dimensional
Imbalanced Classification [1.0312968200748118]
高次元の線形判別分析(LDA)における不均衡クラスサイズの影響について検討した。
マイノリティ・クラスと呼ばれる1つのクラスのデータの不足により、LDAはマイノリティ・クラスを無視し、最大誤分類率を得ることを示す。
そこで本研究では,不等式化率の大きな差を低減させる分割・対数法に基づくハードコンカレンスルールの新たな構成法を提案する。
論文 参考訳(メタデータ) (2021-11-05T07:44:28Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Statistical Theory for Imbalanced Binary Classification [8.93993657323783]
最適分類性能は、これまで形式化されていなかったクラス不均衡の特定の性質に依存することを示す。
具体的には、一様クラス不均衡と呼ばれる新しいクラス不均衡のサブタイプを提案する。
これらの結果は、不均衡二項分類に対する最初の有意義な有限サンプル統計理論のいくつかを提供する。
論文 参考訳(メタデータ) (2021-07-05T03:55:43Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
長いラベルの分布を持つ実世界のデータセットで訓練されたニューラルネットワークは、頻繁なクラスに偏りがあり、頻繁なクラスでは不十分である。
本稿では,この比率を利用したPLM(Partial Label Masking)を提案する。
本手法は,マルチラベル (MultiMNIST と MSCOCO) とシングルラベル (CIFAR-10 と CIFAR-100) の2つの画像分類データセットにおいて,既存の手法と比較して高い性能を実現する。
論文 参考訳(メタデータ) (2021-05-22T18:07:56Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Cautious Active Clustering [79.23797234241471]
ユークリッド空間上の未知の確率測度からサンプリングされた点の分類の問題を考える。
我々のアプローチは、未知の確率測度を、各クラスに対する条件付き確率の凸結合として考えることである。
論文 参考訳(メタデータ) (2020-08-03T23:47:31Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。