論文の概要: Visual Spoofing in content based spam detection
- arxiv url: http://arxiv.org/abs/2004.05265v2
- Date: Tue, 10 Nov 2020 01:44:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 10:16:44.653796
- Title: Visual Spoofing in content based spam detection
- Title(参考訳): コンテンツに基づくスパム検出におけるビジュアルスプーフィング
- Authors: Mark Sokolov, Kehinde Olufowobi and Nic Herndon
- Abstract要約: ある文字を別のアルファベットの対応する文字に置き換える脆弱性を提示する。
このアプローチにより、スパマーは既存のスパムフィルタをバイパスするメッセージを作成することができる。
本手法は, 文書の自動解析に自然言語処理を用いる他のアプリケーションにおいても, 盗作検出の回避に有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although the problem of spam classification seems to be solved, there are
still vulnerabilities in the current spam filters that could be easily
exploited. We present one such vulnerability, in which one could replace some
characters with corresponding characters from a different alphabet. These
characters are visually similar, yet have a different Unicode encoding. With
this approach spammers can create messages that bypass existing spam filters.
Moreover, we show that this approach can be used to avoid plagiarism detection,
and in other applications that use natural language processing for automatic
analysis of text documents.
- Abstract(参考訳): スパム分類の問題は解決されているように見えるが、現在のスパムフィルタには、容易に悪用できる脆弱性がある。
そのような脆弱性の一つとして、ある文字を別のアルファベットの対応する文字に置き換えることができる。
これらの文字は視覚的に類似しているが、Unicodeエンコーディングが異なる。
このアプローチにより、スパマーは既存のスパムフィルターをバイパスするメッセージを作成できる。
また,本手法は,テキスト文書の自動解析に自然言語処理を応用した他のアプリケーションにおいても,盗作検出を回避できることを示す。
関連論文リスト
- Different Victims, Same Layout: Email Visual Similarity Detection for Enhanced Email Protection [0.3683202928838613]
我々は,電子メール脅威防御システムの検知能力を向上させるために,Pisco という名の電子メール視覚類似性検出手法を提案する。
以上の結果から,Eメールキットは広範囲に再利用され,視覚的に類似したメールが,さまざまな時間間隔で当社の顧客に送信されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-08-29T23:51:51Z) - Topic-Based Watermarks for LLM-Generated Text [46.71493672772134]
本稿では,大規模言語モデル(LLM)のためのトピックベースの新しい透かしアルゴリズムを提案する。
トピック固有のトークンバイアスを使用することで、生成されたテキストにトピック依存の透かしを埋め込む。
提案手法は,テキストトピックを99.99%の信頼度で分類する。
論文 参考訳(メタデータ) (2024-04-02T17:49:40Z) - Application of BadNets in Spam Filters [1.5755923640031848]
我々はスパムフィルタリングの分野でバックドア攻撃を設計する。
スパムフィルタで使用されるモデルの注意深い検討と評価の必要性を強調した。
論文 参考訳(メタデータ) (2023-07-18T21:39:39Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
本研究では,人間による書き直し後の透かしテキストの堅牢性,非透かしLDMによる言い換え,あるいはより長い手書き文書への混在性について検討する。
人や機械の言い回しをしても、透かしは検出可能である。
また、大きな文書に埋め込まれた透かし付きテキストの短いスパンに敏感な新しい検出手法についても検討する。
論文 参考訳(メタデータ) (2023-06-07T17:58:48Z) - Watermarking Text Generated by Black-Box Language Models [103.52541557216766]
テキスト生成中に透かしを埋め込むことのできるホワイトボックスLCMに対して,透かしに基づく手法が提案されている。
リストを認識した検出アルゴリズムは、透かし付きテキストを識別することができる。
我々はブラックボックス言語モデル利用シナリオのための透かしフレームワークを開発する。
論文 参考訳(メタデータ) (2023-05-14T07:37:33Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
LLMの規制されていない使用は、盗作、偽ニュースの生成、スパムなど、悪意のある結果をもたらす可能性がある。
最近の研究は、生成されたテキスト出力に存在する特定のモデルシグネチャを使用するか、透かし技術を適用してこの問題に対処しようとしている。
本稿では,これらの検出器は実用シナリオにおいて信頼性が低いことを示す。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z) - Building an Effective Email Spam Classification Model with spaCy [0.0]
著者はPythonプログラミング言語のspurCy自然言語処理ライブラリと3つの機械学習(ML)アルゴリズムを使用して、Gmailサービスから収集されたスパムメールを検出する。
論文 参考訳(メタデータ) (2023-03-15T17:41:11Z) - Tracing Text Provenance via Context-Aware Lexical Substitution [81.49359106648735]
文脈を考慮した語彙置換に基づく自然言語透かし方式を提案する。
主観的および主観的尺度の両面において,我々の透かし方式は原文の意味的整合性を十分に維持することができる。
論文 参考訳(メタデータ) (2021-12-15T04:27:33Z) - Privacy-Preserving Spam Filtering using Functional Encryption [1.0019926246026924]
我々は,暗号化メールの分類を可能にするスパム分類フレームワークを構築した。
本モデルは,2層ネットワーク部と多層知覚ネットワーク部を有するニューラルネットワークに基づく。
実世界のスパムデータセットの評価結果は,提案したスパム分類モデルが96%以上の精度を達成していることを示している。
論文 参考訳(メタデータ) (2020-12-08T02:14:28Z) - Adversarial Watermarking Transformer: Towards Tracing Text Provenance
with Data Hiding [80.3811072650087]
自然言語の透かしを防御として研究し,テキストの出所の発見と追跡に役立てる。
本稿では,適応型透かし変換器(AWT)とエンコーダ・デコーダ・デコーダを併用した対向型透かし変換器(AWT)について述べる。
AWTは、テキストにデータを隠蔽する最初のエンドツーエンドモデルである。
論文 参考訳(メタデータ) (2020-09-07T11:01:24Z) - DeepQuarantine for Suspicious Mail [0.0]
DeepQuarantine(DQ)は、潜在的なスパムメッセージを検出し、隔離するクラウド技術である。
隔離されたメールのほとんどはスパムであり、クライアントは遅滞なくメールを使用できる。
論文 参考訳(メタデータ) (2020-01-13T11:32:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。