論文の概要: Generic Error Bounds for the Generalized Lasso with Sub-Exponential Data
- arxiv url: http://arxiv.org/abs/2004.05361v2
- Date: Mon, 18 May 2020 17:23:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 13:09:15.276778
- Title: Generic Error Bounds for the Generalized Lasso with Sub-Exponential Data
- Title(参考訳): 部分指数データを用いた一般化ラッソのジェネリック誤差境界
- Authors: Martin Genzel and Christian Kipp
- Abstract要約: この研究は、部分指数データの仮定の下で一般化されたラッソの非漸近解析を行う。
本稿では,ジェネリックチェインに基づく証明戦略から自然に生じる2つの複雑性パラメータを用いて,推定誤差を制御できることを示す。
- 参考スコア(独自算出の注目度): 4.56877715768796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work performs a non-asymptotic analysis of the generalized Lasso under
the assumption of sub-exponential data. Our main results continue recent
research on the benchmark case of (sub-)Gaussian sample distributions and
thereby explore what conclusions are still valid when going beyond. While many
statistical features of the generalized Lasso remain unaffected (e.g.,
consistency), the key difference becomes manifested in the way how the
complexity of the hypothesis set is measured. It turns out that the estimation
error can be controlled by means of two complexity parameters that arise
naturally from a generic-chaining-based proof strategy. The output model can be
non-realizable, while the only requirement for the input vector is a generic
concentration inequality of Bernstein-type, which can be implemented for a
variety of sub-exponential distributions. This abstract approach allows us to
reproduce, unify, and extend previously known guarantees for the generalized
Lasso. In particular, we present applications to semi-parametric output models
and phase retrieval via the lifted Lasso. Moreover, our findings are discussed
in the context of sparse recovery and high-dimensional estimation problems.
- Abstract(参考訳): 本研究は,準指数データを仮定した一般化lassoの非漸近解析を行う。
我々の主な成果は (sub-)Gaussian sample distributions のベンチマークケースに関する最近の研究を継続し, 今後どのような結論が得られるかを探るものである。
一般化されたラッソの多くの統計的特徴(例えば一貫性など)は影響を受けないが、仮説集合の複雑性を測定する方法において鍵となる違いが現れる。
推定誤差は、ジェネリック連鎖に基づく証明戦略から自然に生じる2つの複雑性パラメータによって制御できることがわかった。
出力モデルは実現不可能であるが、入力ベクトルの唯一の要件はベルンシュタイン型の一般濃度不等式であり、これは様々な部分指数分布に対して実装できる。
この抽象的なアプローチにより、一般化されたラッソの既知保証を再現し、統一し、拡張することができる。
特に,半パラメトリック出力モデルと昇降ラッソを用いた位相探索への応用について述べる。
さらに,スパースリカバリ問題と高次元推定問題に関して考察を行った。
関連論文リスト
- Generalized Laplace Approximation [23.185126261153236]
我々は、ベイズ的不整合を不特定性をモデル化し、不適切な先行をモデル化するために、統一された理論的枠組みを導入する。
正規化損失関数のヘッセン行列に対する簡単な調整を含む一般化ラプラス近似を提案する。
我々は、最先端のニューラルネットワークと実世界のデータセット上での一般化されたLaplace近似の性能と特性を評価する。
論文 参考訳(メタデータ) (2024-05-22T11:11:42Z) - A cost-sensitive constrained Lasso [2.8265531928694116]
本稿では,Lassoをベースとした目的関数に2次的性能制約を加えるLassoの新たなバージョンを提案する。
その結果、非線形最適化問題により制約付きスパース回帰モデルが定義される。
このコストに敏感なラッソは、異なるソースからデータが収集される異質なサンプルに直接的な応用がある。
論文 参考訳(メタデータ) (2024-01-31T17:36:21Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Classification of Heavy-tailed Features in High Dimensions: a
Superstatistical Approach [1.4469725791865984]
我々は2つのデータポイントの雲と一般的なセントロイドの混合の学習を特徴付ける。
得られた推定器の一般化性能について検討し、正規化の役割を解析し、分離性遷移を解析した。
論文 参考訳(メタデータ) (2023-04-06T07:53:05Z) - Predicting Unreliable Predictions by Shattering a Neural Network [145.3823991041987]
線形ニューラルネットワークは、サブファンクションに分割することができる。
サブファンクションは、独自のアクティベーションパターン、ドメイン、経験的エラーを持っている。
完全なネットワークに対する経験的エラーは、サブファンクションに対する期待として記述できる。
論文 参考訳(メタデータ) (2021-06-15T18:34:41Z) - Robust Generalised Bayesian Inference for Intractable Likelihoods [9.77823546576708]
スタインの不一致を損失関数として一般化ベイズ推論を考える。
これは、確率が難解な正規化定数を含む応用によって動機づけられる。
後肢の整合性, 正規性, 偏在性を示し, これらの特性がスタインの相違の選択によってどのように影響するかを明らかにする。
論文 参考訳(メタデータ) (2021-04-15T10:31:22Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Generalized Entropy Regularization or: There's Nothing Special about
Label Smoothing [83.78668073898001]
本稿では, ラベル平滑化を含むエントロピー正則化器群を紹介する。
モデル性能のばらつきはモデルのエントロピーによって大きく説明できる。
我々は,他のエントロピー正規化手法の使用を推奨する。
論文 参考訳(メタデータ) (2020-05-02T12:46:28Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z) - Robust Generalization via $\alpha$-Mutual Information [24.40306100502023]
R'enyi $alpha$-DivergencesとSibsonの$alpha$-Mutual Informationを使って、同じ事象の2つの確率測度を接続するバウンド。
結果は、学習アルゴリズムの一般化誤差の境界から、適応データ分析のより一般的なフレームワークまで幅広い応用がある。
論文 参考訳(メタデータ) (2020-01-14T11:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。