論文の概要: A Pose Proposal and Refinement Network for Better Object Pose Estimation
- arxiv url: http://arxiv.org/abs/2004.05507v2
- Date: Wed, 7 Oct 2020 15:41:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 13:00:24.660071
- Title: A Pose Proposal and Refinement Network for Better Object Pose Estimation
- Title(参考訳): 被写体ポーズ推定のためのポーズ提案と改良ネットワーク
- Authors: Ameni Trabelsi, Mohamed Chaabane, Nathaniel Blanchard and Ross
Beveridge
- Abstract要約: 本稿では,RGB入力で動作する,エンドツーエンドの6Dオブジェクトポーズ推定手法を提案する。
提案するパイプラインは、最先端のRGBベースの手法と競合するランタイム性能より優れています。
- 参考スコア(独自算出の注目度): 0.5735035463793008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a novel, end-to-end 6D object pose estimation
method that operates on RGB inputs. Our approach is composed of 2 main
components: the first component classifies the objects in the input image and
proposes an initial 6D pose estimate through a multi-task, CNN-based
encoder/multi-decoder module. The second component, a refinement module,
includes a renderer and a multi-attentional pose refinement network, which
iteratively refines the estimated poses by utilizing both appearance features
and flow vectors. Our refiner takes advantage of the hybrid representation of
the initial pose estimates to predict the relative errors with respect to the
target poses. It is further augmented by a spatial multi-attention block that
emphasizes objects' discriminative feature parts. Experiments on three
benchmarks for 6D pose estimation show that our proposed pipeline outperforms
state-of-the-art RGB-based methods with competitive runtime performance.
- Abstract(参考訳): 本稿では,RGB入力で動作する,エンドツーエンドの6Dオブジェクトポーズ推定手法を提案する。
最初のコンポーネントは入力画像内のオブジェクトを分類し,マルチタスク,CNNベースのエンコーダ/マルチデコーダモジュールによる初期6Dポーズ推定を提案する。
第2のコンポーネントであるリファインメントモジュールは、レンダラーと多視点ポーズリファインメントネットワークを含み、外観特徴とフローベクトルの両方を利用して推定されたポーズを反復的に洗練する。
我々の製錬業者は,初期ポーズ推定のハイブリッド表現を利用して,目標ポーズに対する相対誤差を予測する。
さらに、オブジェクトの識別的特徴部分を強調する空間的マルチアテンションブロックによって強化される。
6次元ポーズ推定のための3つのベンチマーク実験により,提案したパイプラインは,最先端のRGBベースの手法と競合する実行性能より優れていることが示された。
関連論文リスト
- RelPose++: Recovering 6D Poses from Sparse-view Observations [66.6922660401558]
スパースビュー画像集合(2-8画像)から6次元カメラポーズを推定する作業に対処する。
我々は,画像対上の相対回転よりも分布を推定するネットワークを学習するRelPoseフレームワークを構築した。
最終システムは,先行技術よりも6次元ポーズ予測を大幅に改善する。
論文 参考訳(メタデータ) (2023-05-08T17:59:58Z) - Robust Category-Level 6D Pose Estimation with Coarse-to-Fine Rendering
of Neural Features [17.920305227880245]
1枚のRGB画像からカテゴリレベルの6Dポーズ推定の問題を考察する。
提案手法は,対象カテゴリを立方体メッシュとして表現し,各メッシュにおける神経機能アクティベーションの生成モデルを学習する。
実験では,先行作業と比較して,カテゴリレベルの6次元ポーズ推定性能が向上した。
論文 参考訳(メタデータ) (2022-09-12T21:31:36Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
既知の3DオブジェクトのセットとRGBまたはRGB-Dの入力画像から、各オブジェクトの6Dポーズを検出して推定する。
我々のアプローチは、ポーズと対応を緊密に結合した方法で反復的に洗練し、アウトレーヤを動的に除去して精度を向上させる。
論文 参考訳(メタデータ) (2022-04-26T18:00:08Z) - ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose
Estimation [76.31125154523056]
物体表面を高密度に表現できる離散ディスクリプタを提案する。
また,微粒化対応予測が可能な微粒化学習戦略を提案する。
論文 参考訳(メタデータ) (2022-03-17T16:16:24Z) - Single-stage Keypoint-based Category-level Object Pose Estimation from
an RGB Image [27.234658117816103]
カテゴリレベルのオブジェクトポーズ推定のための,単一段階のキーポイントに基づくアプローチを提案する。
提案ネットワークは2次元オブジェクト検出を行い、2次元キーポイントを検出し、6-DoFのポーズを推定し、相対的に有界な立方体次元を回帰する。
我々は,3次元IoU測定値における最先端の手法よりも優れた,挑戦的なObjectronベンチマークに関する広範囲な実験を行った。
論文 参考訳(メタデータ) (2021-09-13T17:55:00Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Poseは、オブジェクトの6自由度(6DoF)をすべて、単一のRGBイメージから散らばった環境でポーズさせるフレームワークである。
本稿では,3次元オブジェクトの2層表現を確立するために,自己閉塞に関する新たな推論を導入する。
対応性,自己閉塞性,6次元ポーズを整列する層間合成により,精度とロバスト性をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-08-18T19:49:29Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
6次元ポーズ推定のための効率的なカテゴリレベルの特徴抽出が可能な高速形状ベースネットワーク(FS-Net)を提案する。
提案手法は,カテゴリレベルおよびインスタンスレベルの6Dオブジェクトのポーズ推定における最先端性能を実現する。
論文 参考訳(メタデータ) (2021-03-12T03:07:24Z) - DualPoseNet: Category-level 6D Object Pose and Size Estimation using
Dual Pose Network with Refined Learning of Pose Consistency [30.214100288708163]
カテゴリーレベルの6Dオブジェクトのポーズとサイズ推定は、オブジェクトインスタンスの回転、翻訳、サイズの設定を9自由度(9DoF)で予測する。
本稿では,この課題に対するポーズ一貫性の学習を洗練し,DualPoseNetと略記したDual Pose Networkを提案する。
論文 参考訳(メタデータ) (2021-03-11T08:33:47Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
本稿では,RGB画像を用いた6次元ポーズ推定の改良手法を提案する。
私たちの主な洞察力は、最初のポーズ推定の後、オブジェクトの異なる空間的特徴に注意を払うことが重要です。
実験により,このアプローチが空間的特徴に順応することを学び,被写体の一部を無視することを学び,データセット間でのポーズ推定を改善することを実証した。
論文 参考訳(メタデータ) (2021-01-05T17:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。