論文の概要: Multi-qubit quantum computing using discrete-time quantum walks on
closed graphs
- arxiv url: http://arxiv.org/abs/2004.05956v2
- Date: Tue, 24 Aug 2021 06:31:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 11:30:59.743582
- Title: Multi-qubit quantum computing using discrete-time quantum walks on
closed graphs
- Title(参考訳): 離散時間量子ウォークを用いた閉グラフ上のマルチキュービット量子コンピューティング
- Authors: Prateek Chawla, Shivani Singh, Aman Agarwal, Sarvesh Srinivasan, C. M.
Chandrashekar
- Abstract要約: 普遍量子計算は、連続時間と離散時間の両方の量子ウォークを用いて実現することができる。
本稿では,単一粒子離散時間量子ウォークに基づくマルチキュービット計算タスクを実現するバージョンを提案する。
- 参考スコア(独自算出の注目度): 2.781051183509143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universal quantum computation can be realised using both continuous-time and
discrete-time quantum walks. We present a version based on single particle
discrete-time quantum walk to realize multi-qubit computation tasks. The
scalability of the scheme is demonstrated by using a set of walk operations on
a closed lattice form to implement the universal set of quantum gates on
multi-qubit system. We also present a set of experimentally realizable walk
operations that can implement Grover's algorithm, quantum Fourier
transformation and quantum phase estimation algorithms. An elementary
implementation of error detection and correction is also presented. Analysis of
space and time complexity of the scheme highlights the advantages of quantum
walk based model for quantum computation on systems where implementation of
quantum walk evolution operations is an inherent feature of the system.
- Abstract(参考訳): 普遍量子計算は、連続時間と離散時間の両方の量子ウォークを用いて実現することができる。
本稿では,単一粒子離散時間量子ウォークに基づくマルチキュービット計算タスクを実現するバージョンを提案する。
このスキームのスケーラビリティは、閉格子形式のウォーク操作の集合を用いて、マルチ量子ビット系上の量子ゲートの普遍的な集合を実装することで証明される。
また、グローバーのアルゴリズム、量子フーリエ変換、量子位相推定アルゴリズムを実装できる、実験的に実現可能なウォーク演算のセットも提示する。
エラー検出と修正の基本的な実装も提示する。
このスキームの空間的および時間的複雑さの分析は、量子ウォーク進化操作の実装がシステム固有の特徴であるシステムにおける量子ウォークに基づく量子計算モデルの利点を強調している。
関連論文リスト
- Quantum Phase Processing and its Applications in Estimating Phase and
Entropies [10.8525801756287]
量子位相処理」は、任意の三角変換をユニタリ作用素の固有位相に直接適用することができる。
量子位相処理は、単にアンシラ量子ビットを測定することで、量子システムの固有情報を取り出すことができる。
本稿では,量子フーリエ変換を必要としない量子位相推定アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-28T17:41:19Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational Quantum Anomaly Detection: Unsupervised mapping of phase
diagrams on a physical quantum computer [0.0]
量子シミュレーションから量子データを解析するための教師なし量子機械学習アルゴリズムである変分量子異常検出を提案する。
このアルゴリズムは、事前の物理的知識を持たないシステムの位相図を抽出するために用いられる。
現在ではアクセスしやすいデバイスで使用でき、実際の量子コンピュータ上でアルゴリズムを実行することができる。
論文 参考訳(メタデータ) (2021-06-15T06:54:47Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Exploiting dynamic quantum circuits in a quantum algorithm with
superconducting qubits [0.207811670193148]
超伝導系量子システム上に動的量子回路を構築する。
我々は、量子位相推定という最も基本的な量子アルゴリズムの1つを適応バージョンで活用する。
我々は、動的回路を用いたリアルタイム量子コンピューティングのバージョンが、実質的で有意義な利点をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-02-02T18:51:23Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
グラフ上の量子ウォークを量子回路として表現する方法を研究する。
提案手法は,量子ウォークアルゴリズムを量子コンピュータ上で効率的に実装する方法である。
論文 参考訳(メタデータ) (2020-12-28T18:04:16Z) - Floquet engineering of continuous-time quantum walks: towards the
simulation of complex and next-to-nearest neighbor couplings [0.0]
グラフ上の連続時間量子ウォークの文脈において、Floquetエンジニアリングの考え方を適用する。
我々は、特定の目標量子ウォークの力学をシミュレートするために使用できる周期駆動ハミルトニアンを定義する。
我々の研究は、量子輸送の指示、一次元量子ウォークの分散関係の工学、高連結構造における量子力学の研究に使用される明示的なシミュレーションプロトコルを提供する。
論文 参考訳(メタデータ) (2020-12-01T12:46:56Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Googleの最近の量子超越性実験は、量子コンピューティングがランダムな回路サンプリングという計算タスクを実行する遷移点を示している。
観測された量子ランタイムの利点の制約を、より多くの量子ビットとゲートで検討する。
論文 参考訳(メタデータ) (2020-05-05T20:11:53Z) - Quantum walks and Dirac cellular automata on a programmable trapped-ion
quantum computer [1.2324860823895265]
本稿では,5量子ビットトラップイオン量子プロセッサ上の位置空間における離散時間量子ウォークの実装について述べる。
我々は、特に多ビット状態における歩行位置の空間を符号化し、異なる量子ウォークパラメータで操作できるようにシステムをプログラムし、可変質量パラメータを持つディラックセルオートマトンを実験的に実現した。
量子ウォーク回路と位置状態マッピングはより大きなモデルや物理システムに好適にスケールし、離散時間量子ウォークアルゴリズムに基づく任意のアルゴリズムの実装とディラック方程式の離散化されたバージョンに関連するダイナミクスを実現する。
論文 参考訳(メタデータ) (2020-02-06T22:24:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。