論文の概要: Human Evaluation of Interpretability: The Case of AI-Generated Music
Knowledge
- arxiv url: http://arxiv.org/abs/2004.06894v1
- Date: Wed, 15 Apr 2020 06:03:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 03:58:21.302396
- Title: Human Evaluation of Interpretability: The Case of AI-Generated Music
Knowledge
- Title(参考訳): 人間による解釈可能性の評価:AIによる音楽知識の事例
- Authors: Haizi Yu, Heinrich Taube, James A. Evans, Lav R. Varshney
- Abstract要約: 我々は、芸術と人文科学におけるAIが発見する知識/ルールを評価することに注力する。
本稿では,洗練された記号的/数値的対象として表現されたAI生成音楽理論/ルールの人間生成言語解釈を収集し,評価する実験手法を提案する。
- 参考スコア(独自算出の注目度): 19.508678969335882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretability of machine learning models has gained more and more
attention among researchers in the artificial intelligence (AI) and
human-computer interaction (HCI) communities. Most existing work focuses on
decision making, whereas we consider knowledge discovery. In particular, we
focus on evaluating AI-discovered knowledge/rules in the arts and humanities.
From a specific scenario, we present an experimental procedure to collect and
assess human-generated verbal interpretations of AI-generated music
theory/rules rendered as sophisticated symbolic/numeric objects. Our goal is to
reveal both the possibilities and the challenges in such a process of decoding
expressive messages from AI sources. We treat this as a first step towards 1)
better design of AI representations that are human interpretable and 2) a
general methodology to evaluate interpretability of AI-discovered knowledge
representations.
- Abstract(参考訳): 機械学習モデルの解釈性は、ai(artificial intelligence)とhci(human-computer interaction)コミュニティの研究者の間でますます注目を集めている。
既存の作業のほとんどは意思決定に重点を置いています。
特に、芸術と人文科学におけるAIによる知識/ルールの評価に焦点を当てる。
特定のシナリオから,洗練された記号・数値オブジェクトとして表現されたAI生成音楽理論/ルールの人間生成言語解釈を収集し,評価する実験手法を提案する。
私たちの目標は、AIソースから表現力のあるメッセージをデコードするプロセスにおける可能性と課題の両方を明らかにすることです。
これを第一歩として扱う
1)人間の解釈可能なAI表現のより良い設計
2)AIが発見する知識表現の解釈可能性を評価するための一般的な手法。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Untangling Critical Interaction with AI in Students Written Assessment [2.8078480738404]
重要な課題は、人間が必須の批判的思考とAIリテラシースキルを備えていることを保証することである。
本稿では,AIと批判的学習者インタラクションの概念を概念化するための第一歩を提供する。
理論的モデルと経験的データの両方を用いて、予備的な発見は、書き込みプロセス中にAIとのディープインタラクションが全般的に欠如していることを示唆している。
論文 参考訳(メタデータ) (2024-04-10T12:12:50Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Building Human-like Communicative Intelligence: A Grounded Perspective [1.0152838128195465]
言語学習における驚くべき進歩の後、AIシステムは人間のコミュニケーション能力の重要な側面を反映しない天井に近づいたようだ。
本稿は、ナチビストと象徴的パラダイムに基づく認知にインスパイアされたAIの方向性には、現代AIの進歩を導くために必要なサブストラテジと具体性がないことを示唆する。
本稿では,「地下」言語知能構築のための具体的かつ実装可能なコンポーネントのリストを提案する。
論文 参考訳(メタデータ) (2022-01-02T01:43:24Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Watershed of Artificial Intelligence: Human Intelligence, Machine
Intelligence, and Biological Intelligence [0.2580765958706853]
本稿は,23年前に提案された1回学習機構と,それに続く画像分類におけるワンショット学習の成功をレビューする。
AIは、人工知能(AHI)、人工知能(AMI)、および人工知能(ABI)の3つのカテゴリに明確に分割されるべきである。
論文 参考訳(メタデータ) (2021-04-27T13:03:25Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Who is this Explanation for? Human Intelligence and Knowledge Graphs for
eXplainable AI [0.0]
我々は、eXplainable AIにヒューマンインテリジェンスがもたらす貢献に焦点を当てる。
我々は、知識表現と推論、社会科学、人間計算、人間-機械協調研究とのより優れた相互作用を求めている。
論文 参考訳(メタデータ) (2020-05-27T10:47:15Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。