論文の概要: A Practical Introduction to Bayesian Estimation of Causal Effects:
Parametric and Nonparametric Approaches
- arxiv url: http://arxiv.org/abs/2004.07375v2
- Date: Fri, 21 Aug 2020 17:29:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 03:57:43.412940
- Title: A Practical Introduction to Bayesian Estimation of Causal Effects:
Parametric and Nonparametric Approaches
- Title(参考訳): 因果効果のベイズ推定の実際的導入:パラメトリックおよび非パラメトリックアプローチ
- Authors: Arman Oganisian, Jason A. Roy
- Abstract要約: 統計学の実践における因果関係のベイズ推定について紹介する。
パラメトリックモデルにおいて、先行モデルが縮尺と空間性を引き出す方法を示す。
ポイント処理および時間変化処理設定における推論について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Substantial advances in Bayesian methods for causal inference have been
developed in recent years. We provide an introduction to Bayesian inference for
causal effects for practicing statisticians who have some familiarity with
Bayesian models and would like an overview of what it can add to causal
estimation in practical settings. In the paper, we demonstrate how priors can
induce shrinkage and sparsity on parametric models and be used to perform
probabilistic sensitivity analyses around causal assumptions. We provide an
overview of nonparametric Bayesian estimation and survey their applications in
the causal inference literature. Inference in the point-treatment and
time-varying treatment settings are considered. For the latter, we explore both
static and dynamic treatment regimes. Throughout, we illustrate implementation
using off-the-shelf open source software. We hope the reader will walk away
with implementation-level knowledge of Bayesian causal inference using both
parametric and nonparametric models. All synthetic examples and code used in
the paper are publicly available on a companion GitHub repository.
- Abstract(参考訳): 近年,因果推論のためのベイズ法の発展が進んでいる。
ベイズモデルに精通した統計学者を対象に,因果効果に対するベイズ推論の紹介を行い,実際的な因果推定に何を加えるかについて概説する。
本稿では,先行者がパラメトリックモデルに縮小とスパーシティを誘導し,因果的仮定に関する確率的感度解析を行う方法を示す。
本稿では,非パラメトリックベイズ推定の概要と因果推論文献への応用について述べる。
ポイント処理および時間変化処理設定における推論を検討する。
後者については,静的および動的治療体制について検討する。
全体として、既製のオープンソースソフトウェアによる実装について説明する。
パラメトリックモデルと非パラメトリックモデルの両方を用いてベイズ因果推論の実装レベル知識を取り除きたい。
論文で使用されるすべての合成例とコードは、GitHubリポジトリで公開されている。
関連論文リスト
- Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference [9.940560505044122]
本稿では,償却ベイズ推定の効率と精度を向上させる手法を提案する。
我々は,関節モデルの近似表現に基づいて限界確率を推定する。
論文 参考訳(メタデータ) (2023-10-06T17:41:41Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Robust probabilistic inference via a constrained transport metric [8.85031165304586]
我々は、パラメトリックな分布の族の近くに集中するように慎重に設計された指数関数的に傾いた経験的確に構築することで、新しい代替手段を提供する。
提案手法は,多種多様なロバストな推論問題に応用し,中心分布に付随するパラメータを推論する。
我々は,最先端の頑健なベイズ推論手法と比較した場合,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-03-17T16:10:06Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため,トレーニングデータの生成に使用した暗黙的情報にデコーダがアクセスできるようにする。
論文 参考訳(メタデータ) (2022-01-28T12:00:31Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
依存関係解析のための解釈可能な推論プロセスを持つニューラルモデルを開発する。
私たちのモデルはインスタンスベースの推論を採用しており、トレーニングセットのエッジと比較することで、依存関係のエッジを抽出し、ラベル付けします。
論文 参考訳(メタデータ) (2021-09-28T05:30:52Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
変分ベイズ法はベイズモデルのパラメトリック的および非パラメトリック的側面に対して感性が得られることを示す。
ベイズ感度分析に対する変動的アプローチの理論的および経験的支援を提供する。
論文 参考訳(メタデータ) (2021-07-08T03:40:18Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Extending the statistical software package Engine for Likelihood-Free
Inference [0.0]
この論文は、ソフトウェアパッケージ Engine for Likelihood-Free Inference (ELFI) におけるRobust optimisation Monte Carlo (ROMC) メソッドの実装に焦点を当てている。
我々の実装は、シミュレーターベースのモデルで推論を実行したい実践者に対して、堅牢で効率的なソリューションを提供します。
論文 参考訳(メタデータ) (2020-11-08T13:22:37Z) - $\beta$-Cores: Robust Large-Scale Bayesian Data Summarization in the
Presence of Outliers [14.918826474979587]
古典的ベイズ推定の質は、観測結果が推定データ生成モデルに適合するかどうかに大きく依存する。
本稿では,大容量データセットに同時スケール可能な変分推論手法を提案する。
多様なシミュレーションおよび実データ、および様々な統計モデルにおいて、我々のアプローチの適用性について説明する。
論文 参考訳(メタデータ) (2020-08-31T13:47:12Z) - Sequential Bayesian Experimental Design for Implicit Models via Mutual
Information [12.68659360172393]
自然科学と医学科学に特に興味を持つモデルのクラスは暗黙のモデルである。
モデルパラメータとシミュレーションデータ間の相互情報(MI)を実用関数として用いたパラメータ推定のための新しい逐次設計フレームワークを考案する。
我々のフレームワークは、テストされた様々な暗黙のモデルに対して効率的であることが分かり、数回の反復で正確なパラメータ推定が得られます。
論文 参考訳(メタデータ) (2020-03-20T16:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。