論文の概要: Robust probabilistic inference via a constrained transport metric
- arxiv url: http://arxiv.org/abs/2303.10085v1
- Date: Fri, 17 Mar 2023 16:10:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-20 13:59:33.569848
- Title: Robust probabilistic inference via a constrained transport metric
- Title(参考訳): 制約付き輸送計量によるロバスト確率的推論
- Authors: Abhisek Chakraborty, Anirban Bhattacharya, Debdeep Pati
- Abstract要約: 我々は、パラメトリックな分布の族の近くに集中するように慎重に設計された指数関数的に傾いた経験的確に構築することで、新しい代替手段を提供する。
提案手法は,多種多様なロバストな推論問題に応用し,中心分布に付随するパラメータを推論する。
我々は,最先端の頑健なベイズ推論手法と比較した場合,提案手法の優れた性能を示す。
- 参考スコア(独自算出の注目度): 8.85031165304586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flexible Bayesian models are typically constructed using limits of large
parametric models with a multitude of parameters that are often
uninterpretable. In this article, we offer a novel alternative by constructing
an exponentially tilted empirical likelihood carefully designed to concentrate
near a parametric family of distributions of choice with respect to a novel
variant of the Wasserstein metric, which is then combined with a prior
distribution on model parameters to obtain a robustified posterior. The
proposed approach finds applications in a wide variety of robust inference
problems, where we intend to perform inference on the parameters associated
with the centering distribution in presence of outliers. Our proposed transport
metric enjoys great computational simplicity, exploiting the Sinkhorn
regularization for discrete optimal transport problems, and being inherently
parallelizable. We demonstrate superior performance of our methodology when
compared against state-of-the-art robust Bayesian inference methods. We also
demonstrate equivalence of our approach with a nonparametric Bayesian
formulation under a suitable asymptotic framework, testifying to its
flexibility. The constrained entropy maximization that sits at the heart of our
likelihood formulation finds its utility beyond robust Bayesian inference; an
illustration is provided in a trustworthy machine learning application.
- Abstract(参考訳): フレキシブルベイズモデルは通常、多くのパラメータを持つ大きなパラメトリックモデルの限界を使って構築され、しばしば解釈できない。
本稿では,ワッサースタイン計量の新しい変種に対して,選択分布のパラメトリック族近傍に集中するように慎重に設計した指数関数的に傾斜した経験的確率を,モデルパラメータの事前分布と組み合わせて頑健な後続を求めることにより,新たな代替案を提案する。
提案手法は, 様々なロバストな推論問題に応用し, 中心分布に付随するパラメータを外乱の存在下で推論することを目的としている。
提案手法は,離散最適輸送問題に対してシンクホーン正則化を有効利用し,本質的に並列化可能である。
現状の頑健なベイズ推論手法と比較した場合,提案手法の優れた性能を示す。
また,本手法を適切な漸近的枠組みの下で非パラメトリックベイズ定式化と等価性を示し,その柔軟性を検証した。
我々の可能性の定式化の中心に位置する制約付きエントロピーの最大化は、強靭なベイズ推論以上の有用性を見出す。
関連論文リスト
- A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression [2.7498981662768536]
疎線形回帰における統計的推測のためのスケーラブルな変分ベイズ法を提案する。
我々のアプローチは、平均場近似をニュアンス座標に割り当てることに依存している。
これは前処理のステップに過ぎず、平均場変動ベイズの計算上の優位性を保っている。
論文 参考訳(メタデータ) (2024-06-18T14:27:44Z) - Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation [7.5620760132717795]
複雑な構造を持つ分布に対するフレキシブルな後続近似を可能にする非パラメトリック近似法を開発した。
広く使われている非パラメトリック推論手法と比較して,提案手法は実装が容易であり,様々なデータ構造に適応する。
実験では, 複雑な後続分布の近似における提案手法の有効性を実証し, 不完全データを用いた生成モデルの性能向上を図った。
論文 参考訳(メタデータ) (2024-03-10T20:22:06Z) - Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference [9.940560505044122]
本稿では,償却ベイズ推定の効率と精度を向上させる手法を提案する。
我々は,関節モデルの近似表現に基づいて限界確率を推定する。
論文 参考訳(メタデータ) (2023-10-06T17:41:41Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
変分ベイズ法はベイズモデルのパラメトリック的および非パラメトリック的側面に対して感性が得られることを示す。
ベイズ感度分析に対する変動的アプローチの理論的および経験的支援を提供する。
論文 参考訳(メタデータ) (2021-07-08T03:40:18Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
正規化ワッサーシュタイン・バリセンタ問題に対する新しい双対定式化を導入する。
我々は、強い双対性を確立し、対応する主対関係を用いて、正規化された輸送問題の双対ポテンシャルを用いて暗黙的にバリセンターをパラメトリゼーションする。
論文 参考訳(メタデータ) (2020-08-28T08:28:06Z) - Misspecification-robust likelihood-free inference in high dimensions [13.934999364767918]
本稿では,ベイズ最適化に基づく近似離散関数の確率的手法による拡張を提案する。
提案手法は,高次元パラメータ空間に対する計算スケーラビリティを,各パラメータの別個の取得関数と相違点を用いて達成する。
本手法は,100次元空間における標準例による計算効率のよい推論を成功させ,既存のモジュール化ABC法と比較した。
論文 参考訳(メタデータ) (2020-02-21T16:06:11Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z) - Lifted Hybrid Variational Inference [31.441922284854893]
ハイブリッド領域に適用可能な2つの近似昇降変分法について検討する。
提案手法はスケーラブルであり,近似モデル対称性を活用可能であることを示す。
我々は、ベテ近似が辺のポリトープに対して非自明な推定を与えるのに十分な条件を示す。
論文 参考訳(メタデータ) (2020-01-08T22:29:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。