A Gentle Introduction to Conformal Prediction and Distribution-Free
Uncertainty Quantification
- URL: http://arxiv.org/abs/2107.07511v1
- Date: Thu, 15 Jul 2021 17:59:50 GMT
- Title: A Gentle Introduction to Conformal Prediction and Distribution-Free
Uncertainty Quantification
- Authors: Anastasios N. Angelopoulos, Stephen Bates
- Abstract summary: This hands-on introduction is aimed at a reader interested in the practical implementation of distribution-free UQ.
We will include many explanatory illustrations, examples, and code samples in Python, with PyTorch syntax.
- Score: 1.90365714903665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Black-box machine learning learning methods are now routinely used in
high-risk settings, like medical diagnostics, which demand uncertainty
quantification to avoid consequential model failures. Distribution-free
uncertainty quantification (distribution-free UQ) is a user-friendly paradigm
for creating statistically rigorous confidence intervals/sets for such
predictions. Critically, the intervals/sets are valid without distributional
assumptions or model assumptions, with explicit guarantees with finitely many
datapoints. Moreover, they adapt to the difficulty of the input; when the input
example is difficult, the uncertainty intervals/sets are large, signaling that
the model might be wrong. Without much work, one can use distribution-free
methods on any underlying algorithm, such as a neural network, to produce
confidence sets guaranteed to contain the ground truth with a user-specified
probability, such as 90%. Indeed, the methods are easy-to-understand and
general, applying to many modern prediction problems arising in the fields of
computer vision, natural language processing, deep reinforcement learning, and
so on. This hands-on introduction is aimed at a reader interested in the
practical implementation of distribution-free UQ, including conformal
prediction and related methods, who is not necessarily a statistician. We will
include many explanatory illustrations, examples, and code samples in Python,
with PyTorch syntax. The goal is to provide the reader a working understanding
of distribution-free UQ, allowing them to put confidence intervals on their
algorithms, with one self-contained document.
Related papers
- Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference [54.17205151960878]
We introduce a sampling-free approach that is generic and easy to deploy.
We produce reliable uncertainty estimates on par with state-of-the-art methods at a significantly lower computational cost.
arXiv Detail & Related papers (2022-11-21T13:23:09Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
We propose to explicitly train the uncertainty predictor where we are not given data to make it reliable.
As one cannot train without data, we provide mechanisms for generating pseudo-inputs in informative low-density regions of the input space.
With a holistic evaluation, we demonstrate that this yields robust and interpretable predictions of uncertainty while retaining state-of-the-art performance on diverse tasks.
arXiv Detail & Related papers (2022-01-15T17:15:07Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits [18.740781076082044]
We propose an approach to overcome the independence assumption behind most of the approaches dealing with a large class of probabilistic reasoning.
We provide an algorithm for Bayesian learning from sparse, albeit complete, observations.
Each leaf of such circuits is labelled with a beta-distributed random variable that provides us with an elegant framework for representing uncertain probabilities.
arXiv Detail & Related papers (2021-02-22T10:03:15Z) - Getting a CLUE: A Method for Explaining Uncertainty Estimates [30.367995696223726]
We propose a novel method for interpreting uncertainty estimates from differentiable probabilistic models.
Our method, Counterfactual Latent Uncertainty Explanations (CLUE), indicates how to change an input, while keeping it on the data manifold.
arXiv Detail & Related papers (2020-06-11T21:53:15Z) - Estimating g-Leakage via Machine Learning [34.102705643128004]
This paper considers the problem of estimating the information leakage of a system in the black-box scenario.
It is assumed that the system's internals are unknown to the learner, or anyway too complicated to analyze.
We propose a novel approach to perform black-box estimation of the g-vulnerability using Machine Learning (ML) algorithms.
arXiv Detail & Related papers (2020-05-09T09:26:36Z) - Knowing what you know: valid and validated confidence sets in multiclass
and multilabel prediction [0.8594140167290097]
We develop conformal prediction methods for constructing valid confidence sets in multiclass and multilabel problems.
By leveraging ideas from quantile regression, we build methods that always guarantee correct coverage but additionally provide conditional coverage for both multiclass and multilabel prediction problems.
arXiv Detail & Related papers (2020-04-21T17:45:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.