論文の概要: Classification using a two-qubit quantum chip
- arxiv url: http://arxiv.org/abs/2004.10426v2
- Date: Wed, 22 Jul 2020 10:19:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 11:06:56.674408
- Title: Classification using a two-qubit quantum chip
- Title(参考訳): 2量子ビット量子チップによる分類
- Authors: Niels M. P. Neumann
- Abstract要約: 実際のアーリーステージ量子ハードウェアを用いた距離に基づく分類に着目する。
本稿では,2つの量子ビットのみを用いた距離ベース分類アルゴリズムを提案し,理論的に期待される結果に類似していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum computing has great potential for advancing machine learning
algorithms beyond classical reach. Even though full-fledged universal quantum
computers do not exist yet, its expected benefits for machine learning can
already be shown using simulators and already available quantum hardware. In
this work, we focus on distance-based classification using actual early stage
quantum hardware. We extend earlier work and present a distance-based
classification algorithm using only two qubits. We show that the results are
similar to the theoretically expected results.
- Abstract(参考訳): 量子コンピューティングは、古典的リーチを超えて機械学習アルゴリズムを進化させる大きな可能性を秘めている。
本格的な普遍量子コンピュータはまだ存在していないが、機械学習の利点はすでにシミュレーターと既に利用可能な量子ハードウェアを使って示されている。
本研究では,実際の初期量子ハードウェアを用いた距離に基づく分類に注目する。
先行研究を拡張し、2つのキュービットのみを用いた距離ベース分類アルゴリズムを提案する。
結果は理論的に期待される結果と類似していることを示す。
関連論文リスト
- Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
量子プロセッサは、考慮された基本的な分類タスクを正しく解くことができることを示す。
量子プロセッサの能力が向上するにつれ、機械学習の有用なツールになり得る。
論文 参考訳(メタデータ) (2024-06-17T18:20:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Systematic Literature Review: Quantum Machine Learning and its
applications [0.0]
この写本は、2017年から2023年にかけて発行された論文の体系的文献レビューを提示することを目的としている。
本研究では、量子機械学習技術とアルゴリズムを使用した94の論文を特定した。
既存の量子コンピュータには、量子コンピューティングがその完全な潜在能力を達成するのに十分な品質、速度、スケールが欠けているため、量子ハードウェアの改善が必要である。
論文 参考訳(メタデータ) (2022-01-11T17:36:34Z) - Quantum Algorithms for Unsupervised Machine Learning and Neural Networks [2.28438857884398]
行列積や距離推定といったタスクを解くために量子アルゴリズムを導入する。
これらの結果は、教師なし機械学習のための新しい量子アルゴリズムの開発に使用される。
また、ニューラルネットワークやディープラーニングのための新しい量子アルゴリズムも提示します。
論文 参考訳(メタデータ) (2021-11-05T16:36:09Z) - Quantum Support Vector Machines for Continuum Suppression in B Meson
Decays [0.27342795342528275]
古典的データを量子状態に変換するプロセスである異なる量子符号化回路が最終分類性能に与える影響について検討する。
本稿では、量子回路シミュレーションを用いて、0.848のAUC(Area Under Receiver Operating Characteristics Curve)の符号化手法を提案する。
データセットの縮小バージョンを使用して、IBM Quantum ibmq_casablancaデバイス上でアルゴリズムを実行し、平均AUCは0.703に達した。
論文 参考訳(メタデータ) (2021-03-23T02:09:05Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - A rigorous and robust quantum speed-up in supervised machine learning [6.402634424631123]
本稿では,汎用量子学習アルゴリズムを用いて,教師付き分類のための厳密な量子スピードアップを確立する。
我々の量子分類器は、フォールトトレラント量子コンピュータを用いてカーネル関数を推定する従来のサポートベクトルマシンである。
論文 参考訳(メタデータ) (2020-10-05T17:22:22Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
機械学習と量子コンピューティングは、特定のアルゴリズムのパフォーマンスと振る舞いにパラダイムシフトを引き起こしている。
本稿ではまず,量子的特徴空間の実装に関する数学的直観について述べる。
従来のKNNの分類手法を模倣した雑音変動量子回路KNNを構築した。
論文 参考訳(メタデータ) (2020-02-22T04:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。