論文の概要: The new methods for equity fund selection and optimal portfolio
construction
- arxiv url: http://arxiv.org/abs/2004.10631v1
- Date: Mon, 20 Apr 2020 08:24:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 19:29:44.737099
- Title: The new methods for equity fund selection and optimal portfolio
construction
- Title(参考訳): 株式ファンド選択と最適ポートフォリオ構築のための新しい手法
- Authors: Yi Cao
- Abstract要約: 我々は、相互ファンドのトップホールディングスから、より小さな株式プールからロングショートポートフォリオの作り方を示す。
これらの手法は統計的証拠に基づいており、モデルの妥当性を綿密に監視し、修復戦略を作成する必要がある。
- 参考スコア(独自算出の注目度): 3.0166620288400776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We relook at the classic equity fund selection and portfolio construction
problems from a new perspective and propose an easy-to-implement framework to
tackle the problem in practical investment. Rather than the conventional way by
constructing a long only portfolio from a big universe of stocks or macro
factors, we show how to produce a long-short portfolio from a smaller pool of
stocks from mutual fund top holdings and generate impressive results. As these
methods are based on statistical evidence, we need closely monitoring the model
validity, and prepare repair strategies.
- Abstract(参考訳): 我々は,古典的株式ファンドの選択とポートフォリオ構築の問題を新たな視点から見直し,実践的投資の課題に対処するための実装が容易な枠組みを提案する。
株式やマクロ要素の大きな宇宙から長いのみのポートフォリオを構築する従来の方法ではなく、相互ファンドのトップホールディングスから小さな株式プールからロングショートポートフォリオを生産し、印象的な結果を生み出す方法を示す。
これらの手法は統計的根拠に基づいており,モデルの妥当性を綿密に監視し,補修戦略を準備する必要がある。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - A Case Study of Next Portfolio Prediction for Mutual Funds [0.0]
この作業は、Next Novel Basket Recommendation (NNBR)タスクとして、相互資金ポートフォリオの予測を行う。
我々は,公開データを用いたベンチマークデータセットを作成し,NNBRタスク上での様々なレコメンデータシステムモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-10-08T12:49:00Z) - Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer [1.4061979259370274]
ヘッジファンドポートフォリオ構築のためのPolyModel理論を実装した。
我々は,長期アルファ,長期比,SVaRなどの定量的尺度を作成する。
また、最新のディープラーニング技術(iTransformer)を使って、上昇傾向を捉えています。
論文 参考訳(メタデータ) (2024-08-06T17:55:58Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Model-Free Market Risk Hedging Using Crowding Networks [1.4786952412297811]
群集はポートフォリオ戦略を設計する上で最も重要なリスク要因の1つだと考えられている。
本研究は,株式の集団化スコアの算出に使用されるファンド保有のネットワーク分析を用いて,株式の集団化分析を行う。
本手法は,コストのかかるオプションベースの戦略や複雑な数値最適化を必要としない,テールリスクを含むポートフォリオリスクの代替手段を提供する。
論文 参考訳(メタデータ) (2023-06-13T19:50:03Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - E2EAI: End-to-End Deep Learning Framework for Active Investing [123.52358449455231]
本稿では, ファクタ選択, ファクタ組み合わせ, 株式選択, ポートフォリオ構築を通じて, ファクター投資のほぼ全過程をカバーするE2Eを提案する。
実際の株式市場データの実験は、アクティブ投資におけるエンドツーエンドのディープ・リーン・フレームワークの有効性を示している。
論文 参考訳(メタデータ) (2023-05-25T10:27:07Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
資産配分とは、ポートフォリオの資産を常に再分配することでリスクと報酬のバランスをとることを目的とした投資戦略である。
我々は、多くの最適化手法の有効性と信頼性を決定するために、広範囲なベンチマーク研究を行う。
論文 参考訳(メタデータ) (2022-07-14T14:44:04Z) - Precise Stock Price Prediction for Robust Portfolio Design from Selected
Sectors of the Indian Stock Market [0.0]
私たちは、選択した5つのセクターすべてに対して、最小限の分散ポートフォリオと最適なリスクポートフォリオを構築しました。
最小分散ポートフォリオと等しい重量ポートフォリオを持つ最適リスクポートフォリオの比較研究は、バックテストによって行われます。
論文 参考訳(メタデータ) (2022-01-14T17:24:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。