論文の概要: CodNN -- Robust Neural Networks From Coded Classification
- arxiv url: http://arxiv.org/abs/2004.10700v2
- Date: Wed, 29 Apr 2020 22:55:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 18:05:12.904384
- Title: CodNN -- Robust Neural Networks From Coded Classification
- Title(参考訳): CodNN - コード分類によるロバストニューラルネットワーク
- Authors: Netanel Raviv, Siddharth Jain, Pulakesh Upadhyaya, Jehoshua Bruck, and
Anxiao Jiang
- Abstract要約: ディープニューラルネットワーク(Deep Neural Networks、DNN)は、現在進行中の情報革命における革命的な力である。
DNNは、敵対的であろうとランダムであろうと、ノイズに非常に敏感である。
これは、DNNのハードウェア実装と、自律運転のような重要なアプリケーションへの展開において、根本的な課題となる。
提案手法により,DNNのデータ層あるいは内部層は誤り訂正符号で符号化され,ノイズ下での計算が成功することが保証される。
- 参考スコア(独自算出の注目度): 27.38642191854458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) are a revolutionary force in the ongoing
information revolution, and yet their intrinsic properties remain a mystery. In
particular, it is widely known that DNNs are highly sensitive to noise, whether
adversarial or random. This poses a fundamental challenge for hardware
implementations of DNNs, and for their deployment in critical applications such
as autonomous driving. In this paper we construct robust DNNs via error
correcting codes. By our approach, either the data or internal layers of the
DNN are coded with error correcting codes, and successful computation under
noise is guaranteed. Since DNNs can be seen as a layered concatenation of
classification tasks, our research begins with the core task of classifying
noisy coded inputs, and progresses towards robust DNNs. We focus on binary data
and linear codes. Our main result is that the prevalent parity code can
guarantee robustness for a large family of DNNs, which includes the recently
popularized binarized neural networks. Further, we show that the coded
classification problem has a deep connection to Fourier analysis of Boolean
functions. In contrast to existing solutions in the literature, our results do
not rely on altering the training process of the DNN, and provide
mathematically rigorous guarantees rather than experimental evidence.
- Abstract(参考訳): ディープニューラルネットワーク(Deep Neural Networks, DNN)は、現在進行中の情報革命における革命的な力である。
特に、dnnは、逆境であれランダムであれ、ノイズに非常に敏感であることが広く知られている。
これは、DNNのハードウェア実装と、自律運転のような重要なアプリケーションへの展開において、根本的な課題となる。
本稿では,誤り訂正符号を用いて堅牢なDNNを構築する。
提案手法により,DNNのデータ層あるいは内部層は誤り訂正符号で符号化され,ノイズ下での計算が成功することが保証される。
DNNは分類タスクの階層的結合と見なすことができるので、我々の研究はノイズコード入力を分類するコアタスクから始まり、堅牢なDNNへと進む。
バイナリデータと線形コードに重点を置いています。
我々の主な成果は、一般的なパリティコードは、最近普及した二項化ニューラルネットワークを含むDNNの大規模なファミリーに対して堅牢性を保証することができるということです。
さらに,符号付き分類問題はブール関数のフーリエ解析と深く関係していることを示す。
文献の既存のソリューションとは対照的に、我々の結果はDNNのトレーニングプロセスの変更に頼らず、実験的な証拠よりも数学的に厳密な保証を提供する。
関連論文リスト
- RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
スパイキングニューラルネットワーク(SNN)は、そのユニークな神経力学と低出力の性質により、広く注目を集めている。
以前の研究では、Poissonコーディングを持つSNNは、小規模データセット上のArtificial Neural Networks(ANN)よりも堅牢であることが実証されている。
この研究は理論上、SNNの固有の対向ロバスト性はポアソン符号に由来することを証明している。
論文 参考訳(メタデータ) (2024-07-29T15:26:15Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
我々は最近提案されたDPLLベースの制約DNN検証手法の拡張であるVeriStableを提案する。
完全接続型フィードネットワーク(FNN)、畳み込み型ニューラルネットワーク(CNN)、残留型ネットワーク(ResNet)など、さまざまな課題のあるベンチマークにおいてVeriStableの有効性を評価する。
予備的な結果は、VeriStableは、VNN-COMPの第1および第2のパフォーマーである$alpha$-$beta$-CROWNやMN-BaBなど、最先端の検証ツールよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-19T23:48:04Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Spiking Neural Network Decision Feedback Equalization [70.3497683558609]
決定フィードバック等化器(DFE)に似たフィードバック構造を持つSNNベースの等化器を提案する。
提案手法は,3種類の模範チャネルに対して,従来の線形等化器よりも明らかに優れていることを示す。
決定フィードバック構造を持つSNNは、競合エネルギー効率の良いトランシーバへのパスを可能にする。
論文 参考訳(メタデータ) (2022-11-09T09:19:15Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Pruning and Slicing Neural Networks using Formal Verification [0.2538209532048866]
ディープニューラルネットワーク(DNN)は、様々なコンピュータシステムにおいてますます重要な役割を担っている。
これらのネットワークを作成するために、エンジニアは通常、望ましいトポロジを指定し、自動トレーニングアルゴリズムを使用してネットワークの重みを選択する。
本稿では,近年のDNN検証の進歩を活用して,この問題に対処することを提案する。
論文 参考訳(メタデータ) (2021-05-28T07:53:50Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
本研究では,探索学習と表現学習の両方が重要な役割を果たす課題を解決するために,ニューラルネットワークの帯域について検討する。
破滅的な忘れ込みに対して耐性があり、完全にオンラインである可能性の高いマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T14:19:07Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - An Efficient Spiking Neural Network for Recognizing Gestures with a DVS
Camera on the Loihi Neuromorphic Processor [12.118084418840152]
Spiking Neural Networks(SNN)は、機械学習ベースのアプリケーションにおいて注目を浴びている。
本稿では,対応するディープニューラルネットワーク(DNN)とほぼ同じ精度のSNNの設計手法を示す。
我々のSNNは89.64%の分類精度を達成し、37のLoihiコアしか占有していない。
論文 参考訳(メタデータ) (2020-05-16T17:00:10Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
ディープニューラルネットワーク(DNN)は、敵対的な例やその他のデータ摂動に対して脆弱である。
GraNは、どのDNNにも容易に適応できる時間およびパラメータ効率の手法である。
GraNは多くの問題セットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-04-20T10:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。