論文の概要: TCNN: Triple Convolutional Neural Network Models for Retrieval-based
Question Answering System in E-commerce
- arxiv url: http://arxiv.org/abs/2004.10919v1
- Date: Thu, 23 Apr 2020 01:02:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 08:52:14.206661
- Title: TCNN: Triple Convolutional Neural Network Models for Retrieval-based
Question Answering System in E-commerce
- Title(参考訳): tcnn:eコマースにおける検索型質問応答システムのための三重畳み込みニューラルネットワークモデル
- Authors: Shuangyong Song, Chao Wang
- Abstract要約: IRベースのモデルの鍵となる解決策は、与えられたクエリの最も類似した知識エントリをQA知識ベースから取得し、それらの知識エントリをセマンティックマッチングモデルで再参照することである。
本稿では、基本的な3つの畳み込みニューラルネットワーク(TCNN)モデルと2つの注意に基づくTCNN(ATCNN)モデルを含むテキストマッチングモデルを用いて、IRベースの電子商取引QAシステムAliMeを改善することを目的とする。
- 参考スコア(独自算出の注目度): 6.1786972717541895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic question-answering (QA) systems have boomed during last few years,
and commonly used techniques can be roughly categorized into Information
Retrieval (IR)-based and generation-based. A key solution to the IR based
models is to retrieve the most similar knowledge entries of a given query from
a QA knowledge base, and then rerank those knowledge entries with semantic
matching models. In this paper, we aim to improve an IR based e-commerce QA
system-AliMe with proposed text matching models, including a basic Triple
Convolutional Neural Network (TCNN) model and two Attention-based TCNN (ATCNN)
models. Experimental results show their effect.
- Abstract(参考訳): 近年,質問自動回答システム(QA)が盛んになり,一般的に使われている手法は情報検索(IR)と世代ベースに分類される。
IRベースのモデルの鍵となる解決策は、与えられたクエリの最も類似した知識エントリをQA知識ベースから取得し、それらの知識エントリをセマンティックマッチングモデルで再参照することである。
本稿では,提案するテキストマッチングモデルとirベースの電子商取引qaシステムについて,基本三重畳み込みニューラルネットワーク(tcnn)モデルと2つの注意に基づくtcnn(atcnn)モデルを含む改善を目標とする。
実験結果は効果を示す。
関連論文リスト
- Unveiling Ontological Commitment in Multi-Modal Foundation Models [7.485653059927206]
ディープニューラルネットワーク(DNN)は、概念の豊かな表現とそれぞれの推論を自動的に学習する。
そこで本研究では,葉柄概念の集合に対してマルチモーダルDNNから学習したスーパークラス階層を抽出する手法を提案する。
最初の評価研究では、最先端基礎モデルから有意義な存在論的階級階層を抽出できることが示されている。
論文 参考訳(メタデータ) (2024-09-25T17:24:27Z) - Evaluation of machine learning architectures on the quantification of
epistemic and aleatoric uncertainties in complex dynamical systems [0.0]
不確実量化(英: Uncertainty Quantification、UQ)は、モデル誤差の自己評価値である。
ガウス過程とファミリーUQ強化ニューラルネットワークの両方を含む機械学習技術について検討する。
検証データ上の正規化残差の分布と推定不確かさの分布の2つの指標を用いて,UQ精度(モデル精度とは異なる)を評価する。
論文 参考訳(メタデータ) (2023-06-27T02:35:25Z) - QUADRo: Dataset and Models for QUestion-Answer Database Retrieval [97.84448420852854]
質問/回答(q/a)ペアのデータベース(DB)が与えられた場合、同じ質問に対してDBをスキャンすることで、対象の質問に答えることができる。
我々は6.3Mのq/aペアからなる大規模DBを構築し、公開質問を用いて、ニューラルIRとq/aペアリランカに基づく新しいシステムを設計する。
我々は、Bing検索エンジン上に構築されたQAシステムという、Webベースの手法とDBベースのアプローチが競合することを示す。
論文 参考訳(メタデータ) (2023-03-30T00:42:07Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
知覚ビデオ品質評価(VQA)は、多くのストリーミングおよびビデオ共有プラットフォームにおいて不可欠な要素である。
本稿では,視覚的に関連のある映像品質表現を自己指導的に学習する問題について考察する。
本研究は, 自己教師型学習を用いて, 知覚力による説得力のある表現が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T15:22:01Z) - Visualising and Explaining Deep Learning Models for Speech Quality
Prediction [0.0]
本稿では,非侵入的音声品質予測モデルであるNISQAについて分析する。
畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)から構成される。
論文 参考訳(メタデータ) (2021-12-12T12:50:03Z) - Joint Models for Answer Verification in Question Answering Systems [85.93456768689404]
我々は3方向のマルチクラス化器を構築し、解答が他の解答をサポートするか、反証するか、あるいは中立かを決定する。
私たちは、WikiQA、TREC-QA、実世界のデータセットでモデルをテストしました。
論文 参考訳(メタデータ) (2021-07-09T05:34:36Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
ニューラルアーキテクチャサーチ(NAS)と受信信号強度(RSS)マップ再構築のための自己学習に基づくモデルを提案する。
このアプローチは、まず最適なNNアーキテクチャを見つけ、与えられた(RSS)マップの地上実測値に対して同時に推論モデルを訓練する。
実験結果から,この第2モデルの信号予測は,非学習に基づく最先端技術や,アーキテクチャ探索を伴わないNNモデルよりも優れていた。
論文 参考訳(メタデータ) (2021-05-17T12:19:22Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。