Numerical Method for Finite-size Security Analysis of Quantum Key
Distribution
- URL: http://arxiv.org/abs/2111.08315v1
- Date: Tue, 16 Nov 2021 09:10:56 GMT
- Title: Numerical Method for Finite-size Security Analysis of Quantum Key
Distribution
- Authors: Hongyi Zhou, Toshihiko Sasaki, Masato Koashi
- Abstract summary: We develop a finite-size security analysis against general attacks for general QKD protocols.
Our result shows that the finite-size key rate can surpass the linear key-rate bound in a realistic communication time.
- Score: 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution (QKD) establishes secure links between remote
communication parties. As a key problem for various QKD protocols, security
analysis gives the amount of secure keys regardless of the eavesdropper's
computational power, which can be done both analytically and numerically.
Compared to analytical methods which tend to require techniques specific to
each QKD protocol, numerical ones are more general since they can be directly
applied to many QKD protocols without additional techniques. However, current
numerical methods are carried out based on some assumptions such as working in
asymptotic limit and collective attacks from eavesdroppers. In this work, we
remove these assumptions and develop a numerical finite-size security analysis
against general attacks for general QKD protocols. We also give an example of
applying the method to the recent Phase-Matching QKD protocol with a simple
protocol design. Our result shows that the finite-size key rate can surpass the
linear key-rate bound in a realistic communication time.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Finite-Key Analysis for Coherent One-Way Quantum Key Distribution [18.15943439545963]
Coherent-one-way (COW) quantum key distribution (QKD) is a significant communication protocol that has been implemented experimentally and deployed in practical products.
Existing security analyses of COW-QKD either provide a short transmission distance or lack immunity against coherent attacks in the finite-key regime.
We present a tight finite-key framework for a variant of COW-QKD, which has been proven to extend the secure transmission distance in the case.
arXiv Detail & Related papers (2023-09-28T03:32:06Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Simple and Rigorous Proof Method for the Security of Practical Quantum
Key Distribution in the Single-Qubit Regime Using Mismatched Basis
Measurements [0.2519906683279153]
Quantum key distribution (QKD) protocols aim at allowing two parties to generate a secret shared key.
While many QKD protocols have been proven unconditionally secure in theory, practical security analyses of experimental QKD implementations typically do not take into account all possible loopholes.
We present a simple method of computing secure key rates for any practical implementation of discrete-variable QKD.
arXiv Detail & Related papers (2022-08-29T17:37:58Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Security analysis method for practical quantum key distribution with
arbitrary encoding schemes [7.321809883860193]
We propose a security analysis method without restriction on encoding schemes.
We illustrate its ability by analyzing source flaws and a high-dimensional asymmetric protocol.
Our work has the potential to become a reference standard for the security analysis of practical QKD.
arXiv Detail & Related papers (2021-09-10T09:53:33Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Improved DIQKD protocols with finite-size analysis [2.940150296806761]
We show that positive randomness is achievable up to depolarizing noise values of $9.33%$, exceeding all previously known noise thresholds.
We also develop a modification to random-key-measurement protocols, using a pre-shared seed followed by a "seed recovery" step.
arXiv Detail & Related papers (2020-12-16T03:04:19Z) - Finite-key analysis for twin-field quantum key distribution based on
generalized operator dominance condition [23.004519226886444]
Quantum key distribution (QKD) can help two distant peers to share secret key bits, whose security is guaranteed by the law of physics.
Recently, twin-field (TF) QKD has been proposed and intensively studied, since it can beat the rate-distance limit.
We propose an improved finite-key analysis of TF-QKD through new operator dominance condition.
arXiv Detail & Related papers (2020-07-17T09:41:06Z) - Numerical Calculations of Finite Key Rate for General Quantum Key
Distribution Protocols [3.749120127914018]
We extend our pre-existing reliable, efficient, tight, and generic numerical method for calculating the key rate of device-dependent QKD protocols.
We explain how this extension preserves the reliability, efficiency, and tightness of the Hilbert method.
arXiv Detail & Related papers (2020-04-24T17:15:53Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.