Robust Screening of COVID-19 from Chest X-ray via Discriminative
Cost-Sensitive Learning
- URL: http://arxiv.org/abs/2004.12592v2
- Date: Thu, 21 May 2020 14:37:04 GMT
- Title: Robust Screening of COVID-19 from Chest X-ray via Discriminative
Cost-Sensitive Learning
- Authors: Tianyang Li, Zhongyi Han, Benzheng Wei, Yuanjie Zheng, Yanfei Hong,
Jinyu Cong
- Abstract summary: We report our solution, discriminative cost-sensitive learning (DCSL), which should be the choice if the clinical needs the assisted screening of COVID-19 from chest X-rays.
DCSL combines both advantages from fine-grained classification and cost-sensitive learning. Firstly, DCSL develops a conditional center loss that learns deep discriminative representation. Secondly, DCSL establishes score-level cost-sensitive learning that can adaptively enlarge the cost of misclassifying COVID-19 examples into other classes.
- Score: 14.342161738164034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the new problem of automated screening of coronavirus
disease 2019 (COVID-19) based on chest X-rays, which is urgently demanded
toward fast stopping the pandemic. However, robust and accurate screening of
COVID-19 from chest X-rays is still a globally recognized challenge because of
two bottlenecks: 1) imaging features of COVID-19 share some similarities with
other pneumonia on chest X-rays, and 2) the misdiagnosis rate of COVID-19 is
very high, and the misdiagnosis cost is expensive. While a few pioneering works
have made much progress, they underestimate both crucial bottlenecks. In this
paper, we report our solution, discriminative cost-sensitive learning (DCSL),
which should be the choice if the clinical needs the assisted screening of
COVID-19 from chest X-rays. DCSL combines both advantages from fine-grained
classification and cost-sensitive learning. Firstly, DCSL develops a
conditional center loss that learns deep discriminative representation.
Secondly, DCSL establishes score-level cost-sensitive learning that can
adaptively enlarge the cost of misclassifying COVID-19 examples into other
classes. DCSL is so flexible that it can apply in any deep neural network. We
collected a large-scale multi-class dataset comprised of 2,239 chest X-ray
examples: 239 examples from confirmed COVID-19 cases, 1,000 examples with
confirmed bacterial or viral pneumonia cases, and 1,000 examples of healthy
people. Extensive experiments on the three-class classification show that our
algorithm remarkably outperforms state-of-the-art algorithms. It achieves an
accuracy of 97.01%, a precision of 97%, a sensitivity of 97.09%, and an
F1-score of 96.98%. These results endow our algorithm as an efficient tool for
the fast large-scale screening of COVID-19.
Related papers
- A novel framework based on deep learning and ANOVA feature selection
method for diagnosis of COVID-19 cases from chest X-ray Images [0.0]
COVID-19 was first identified in Wuhan and quickly spread worldwide.
Most accessible method for COVID-19 identification is RT-PCR.
Compared to RT-PCR, chest CT scans and chest X-ray images provide superior results.
DenseNet169 was employed to extract features from X-ray images.
arXiv Detail & Related papers (2021-09-30T16:10:31Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved
Covid-19 Detection [6.123089440692208]
Coronavirus (COVID-19) is a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV-2)
Early results suggest that abnormalities exist in chest X-rays of patients suggestive of COVID-19.
Deep learning systems like convolutional neural networks (CNNs) need a substantial amount of training data.
arXiv Detail & Related papers (2021-03-08T21:53:29Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
We develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT)
In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses.
Our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%.
arXiv Detail & Related papers (2020-05-06T09:56:51Z) - Deep Learning for Screening COVID-19 using Chest X-Ray Images [0.2062593640149623]
We propose a new concept called domain extension transfer learning (DETL) to train deep neural networks.
We employ DETL, with pre-trained deep convolutional neural network, on a related large chest X-Ray dataset.
A 5-fold cross validation is performed to estimate the feasibility of using chest X-Rays to diagnose COVID-19.
arXiv Detail & Related papers (2020-04-22T11:41:50Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
The main goal of this work is to propose an accurate yet efficient method for the problem of COVID-19 screening in chest X-rays.
A dataset of 13,569 X-ray images divided into healthy, non-COVID-19 pneumonia, and COVID-19 patients is used to train the proposed approaches.
Results: The proposed approach was able to produce a high-quality model, with an overall accuracy of 93.9%, COVID-19, sensitivity of 96.8% and positive prediction of 100%.
arXiv Detail & Related papers (2020-04-12T23:26:56Z) - DeepCOVIDExplainer: Explainable COVID-19 Diagnosis Based on Chest X-ray
Images [1.6855835471222005]
We propose an explainable deep neural networks(DNN)-based method for automatic detection of COVID-19 symptoms from CXR images.
We used 15,959 CXR images of 15,854 patients, covering normal, pneumonia, and COVID-19 cases.
Our approach can identify COVID-19 confidently with a positive predictive value(PPV) of 91.6%, 92.45%, and 96.12%.
arXiv Detail & Related papers (2020-04-09T15:03:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.