論文の概要: Densely Connected Recurrent Residual (Dense R2UNet) Convolutional Neural
Network for Segmentation of Lung CT Images
- arxiv url: http://arxiv.org/abs/2102.00663v1
- Date: Mon, 1 Feb 2021 06:34:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-02 17:21:11.048440
- Title: Densely Connected Recurrent Residual (Dense R2UNet) Convolutional Neural
Network for Segmentation of Lung CT Images
- Title(参考訳): Densely Connected Residual Residual (Dense R2UNet) Convolutional Neural Network for Segmentation of Lung CT Images
- Authors: Kaushik Dutta
- Abstract要約: 本稿では,U-Netモデルアーキテクチャに基づくリカレントCNN,Residual Network,Dense Convolutional Networkの合成について述べる。
ベンチマークLung Lesionデータセットで検証したモデルでは、同等のモデルよりもセグメンテーションタスクのパフォーマンスが向上した。
- 参考スコア(独自算出の注目度): 0.342658286826597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning networks have established themselves as providing state of art
performance for semantic segmentation. These techniques are widely applied
specifically to medical detection, segmentation and classification. The advent
of the U-Net based architecture has become particularly popular for this
application. In this paper we present the Dense Recurrent Residual
Convolutional Neural Network(Dense R2U CNN) which is a synthesis of Recurrent
CNN, Residual Network and Dense Convolutional Network based on the U-Net model
architecture. The residual unit helps training deeper network, while the dense
recurrent layers enhances feature propagation needed for segmentation. The
proposed model tested on the benchmark Lung Lesion dataset showed better
performance on segmentation tasks than its equivalent models.
- Abstract(参考訳): ディープラーニングネットワークは、セマンティックセグメンテーションのためのアートパフォーマンスの状態を提供するものとして確立されている。
これらの技術は医学の検出、区分および分類に特に適用されます。
U-Netベースのアーキテクチャの出現は、このアプリケーションで特に人気がある。
本稿では、U-Netモデルアーキテクチャに基づくRecurrent CNN, Residual Network, Dense Convolutional Networkの合成であるDense Recurrent Residual Convolutional Neural Network(Dense R2U CNN)について述べる。
残留ユニットはより深いネットワークを訓練するのを助け、密な繰り返し層はセグメンテーションに必要な機能伝搬を強化する。
ベンチマークLung Lesionデータセットでテストされた提案モデルは、同等のモデルよりもセグメンテーションタスクのパフォーマンスが向上した。
関連論文リスト
- MDFI-Net: Multiscale Differential Feature Interaction Network for Accurate Retinal Vessel Segmentation [3.152646316470194]
本稿では,MDFI-Net という DPCN に基づく機能拡張型インタラクションネットワークを提案する。
提案したMDFI-Netは,公開データセットの最先端手法よりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2024-10-20T16:42:22Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - RFC-Net: Learning High Resolution Global Features for Medical Image
Segmentation on a Computational Budget [4.712700480142554]
本稿では,圧縮された計算空間における高解像度グローバルな特徴を学習するReceptive Field Chain Network (RFC-Net)を提案する。
提案実験により,RFC-Net が Kvasir および CVC-ClinicDB のPolyp セグメンテーションのベンチマークにおいて,最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-02-13T06:52:47Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
スペックルはSAR画像を劣化させるため、リモートセンシングにおいて重要な問題である。
近年の研究では、畳み込みニューラルネットワーク(CNN)が古典的解法よりも優れていることが示されている。
本研究は、受容場を制限することで低レベルの特徴を学習することに集中するために、過剰なCNNアーキテクチャを用いる。
本稿では,合成および実SAR画像の非特定化手法と比較して,提案手法により非特定化性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-31T15:55:37Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel
Segmentation Using a Genetic Algorithm [2.6629444004809826]
遺伝的U-Netは、より優れた網膜血管セグメンテーションを実現することができるが、アーキテクチャに基づくパラメータが少ないU字型畳み込みニューラルネットワーク(CNN)を生成するために提案されている。
実験の結果,提案手法を用いて得られたアーキテクチャは,元のU-Netパラメータの1%以下で優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-29T13:31:36Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
本稿では,様々なスケールのマルチスケール特徴融合を用いた新しいニューラルネットワークを提案し,その精度と効率的なセマンティックイメージセグメンテーションを提案する。
我々は、ResNetベースの特徴抽出器、ダウンサンプリング部における拡張畳み込み層、アップサンプリング部におけるアトラス畳み込み層を使用し、コンキャット操作を用いてそれらをマージした。
より文脈的な情報をエンコードし、ネットワークの受容領域を強化するため、新しいアテンションモジュールが提案されている。
論文 参考訳(メタデータ) (2020-06-30T20:19:09Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
我々は、通常見過ごされる設計空間、すなわち事前定義されたネットワークのチャネル構成を調整することを検討する。
この調整は、拡張ベースラインネットワークを縮小することで実現でき、性能が向上する。
画像分類、視覚追跡、画像復元のための様々なネットワークとデータセットで実験を行う。
論文 参考訳(メタデータ) (2020-06-29T17:59:26Z) - DRU-net: An Efficient Deep Convolutional Neural Network for Medical
Image Segmentation [2.3574651879602215]
残留ネットワーク(ResNet)と密結合ネットワーク(DenseNet)は、ディープ畳み込みニューラルネットワーク(DCNN)のトレーニング効率と性能を大幅に改善した。
両ネットワークの利点を考慮した効率的なネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-04-28T12:16:24Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。