論文の概要: Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested
Belief
- arxiv url: http://arxiv.org/abs/2110.02480v1
- Date: Wed, 6 Oct 2021 03:24:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-07 14:27:43.648221
- Title: Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested
Belief
- Title(参考訳): マルチエージェント・エピステマティクス・プランニング : ネストされた信念についてプランナーに教える
- Authors: Christian Muise, Vaishak Belle, Paolo Felli, Sheila McIlraith, Tim
Miller, Adrian R. Pearce, Liz Sonenberg
- Abstract要約: 我々は, 一つのエージェントの観点から, ネストされた信念, 非同質なエージェント, 共同表現観察, あるいはあるエージェントが別のエージェントであるかのように推論する能力を含む, 目標と行動の可能性を秘めている。
提案手法は,複数エージェントのネストされた信念を含む計画課題に,十分に確立された自動計画分野を適用するための重要なステップである。
- 参考スコア(独自算出の注目度): 27.524600740450126
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many AI applications involve the interaction of multiple autonomous agents,
requiring those agents to reason about their own beliefs, as well as those of
other agents. However, planning involving nested beliefs is known to be
computationally challenging. In this work, we address the task of synthesizing
plans that necessitate reasoning about the beliefs of other agents. We plan
from the perspective of a single agent with the potential for goals and actions
that involve nested beliefs, non-homogeneous agents, co-present observations,
and the ability for one agent to reason as if it were another. We formally
characterize our notion of planning with nested belief, and subsequently
demonstrate how to automatically convert such problems into problems that
appeal to classical planning technology for solving efficiently. Our approach
represents an important step towards applying the well-established field of
automated planning to the challenging task of planning involving nested beliefs
of multiple agents.
- Abstract(参考訳): 多くのAIアプリケーションは、複数の自律エージェントの相互作用を含み、エージェントは他のエージェントと同様に、自身の信念を推論する必要がある。
しかし、ネスト化された信念を含む計画は計算的に難しいことが知られている。
本研究では,他のエージェントの信念に対する推論を必要とするプランを合成する作業に対処する。
我々は, 一つのエージェントの観点から, ネストされた信念, 非同質なエージェント, 共同表現観察, あるいはあるエージェントが別のエージェントであるかのように推論する能力を含む, 目標と行動の可能性を考察する。
私たちは、計画の概念をネスト化された信念で正式に特徴付け、それらの問題を効率的に解決するための古典的な計画技術にアピールする問題に自動的に変換する方法をデモします。
提案手法は,複数エージェントのネストされた信念を含む計画課題に,十分に確立された自動計画分野を適用するための重要なステップである。
関連論文リスト
- Revealing the Barriers of Language Agents in Planning [44.913745512049246]
現在の言語エージェントにはまだ人間レベルの計画能力がないことが示されています。
最先端の推論モデルであるOpenAI o1でさえ、複雑な現実世界の計画ベンチマークの1つで15.6%しか達成していない。
エージェント・プランニングを妨げる2つの重要な要因として,制約の役割の制限と質問の影響の減少があげられる。
論文 参考訳(メタデータ) (2024-10-16T09:44:38Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
本稿では,高速なタスク分解とアロケーションプロセスを活用するマルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークを提案する。
提案フレームワークにフィードバックループを組み込んで,そのような問題解決プロセスの有効性と堅牢性をさらに向上させる。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
大型言語モデル(LLM)は人間のような知性を模倣することができる。
WorkArena++は、Webエージェントの計画、問題解決、論理的/論理的推論、検索、コンテキスト的理解能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-07T07:15:49Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
プロアクティブエージェントプランニングでは、ユーザエージェントの会話とエージェント環境のインタラクションに基づいて、言語エージェントが明確化のニーズを予測する必要がある。
本稿では,明確化,実行,計画の3つのエージェントからなる新しいマルチエージェントフレームワーク,Clarification-Execution-Planning(textttCEP)を提案する。
論文 参考訳(メタデータ) (2024-06-18T14:07:28Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
製造システムと自律ロボットの研究において、機械で解釈可能なシステム機能の仕様に「能力」という用語が用いられる。
セマンティック能力モデルから始めて、AI計画問題を自動的に生成するアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-14T10:37:34Z) - Adaptation and Communication in Human-Robot Teaming to Handle
Discrepancies in Agents' Beliefs about Plans [13.637799815698559]
我々はモンテカルロ木探索に基づくオンライン実行アルゴリズムを提案し,その動作を計画する。
私たちのエージェントは、共有されたメンタルモデルを保証することなく、チームで作業するための装備がより優れていることを示しています。
論文 参考訳(メタデータ) (2023-07-07T03:05:34Z) - Robust Planning for Human-Robot Joint Tasks with Explicit Reasoning on
Human Mental State [2.8246074016493457]
我々は,人間ロボットチームが達成するための既知の目的を持った共有タスクを与えられる,人間に意識したタスク計画問題を考える。
近年のアプローチでは、ロボットが両方のエージェント(共有された)タスクを計画する独立した合理的エージェントのチームとしてそれをモデル化している。
本稿では,実行時の可観測性規約をモデル化し,使用するための新しいアプローチについて述べる。
論文 参考訳(メタデータ) (2022-10-17T09:21:00Z) - Formalizing the Problem of Side Effect Regularization [81.97441214404247]
本稿では,補助ゲームフレームワークを用いたサイドエフェクト正規化のための公式な基準を提案する。
これらのゲームでは、エージェントは部分的に観測可能なマルコフ決定プロセスを解決する。
このPOMDPは、エージェントが将来的なタスクをこなす能力と、プロキシ報酬を交換することで解決されることを示す。
論文 参考訳(メタデータ) (2022-06-23T16:36:13Z) - Comprehensive Multi-Agent Epistemic Planning [0.0]
この写本は、MEP(Multi-Adnt Epistemic Planning)として知られる特殊な計画に重点を置いている。
EPは、エージェントが知識/信任状態の空間で理由付けを行い、開始状態から望ましい状態に到達する計画を見つけようとする自動計画環境を指す。
その一般的な形であるMEP問題(英語版)は、世界の状態とエージェント間の情報の流れの両方を推論する必要がある複数のエージェントを含んでいる。
論文 参考訳(メタデータ) (2021-09-17T01:50:18Z) - Modelling Multi-Agent Epistemic Planning in ASP [66.76082318001976]
本稿では,マルチショット・アンサー・セット・プログラミング・ベース・プランナの実装について述べる。
本稿は, アドホックなエピステミック状態表現とASPソルバの効率を生かしたプランナーが, 文献から収集したベンチマークに対して, 競合的な性能を示すことを示す。
論文 参考訳(メタデータ) (2020-08-07T06:35:56Z) - Tradeoff-Focused Contrastive Explanation for MDP Planning [7.929642367937801]
実際の計画の応用では、計画エージェントの決定は、競合する目標間の複雑なトレードオフを伴う可能性がある。
エンドユーザは、目的値に基づいて、エージェントが特定の計画ソリューションを決定する理由を理解することは困難である。
本稿では,マルチオブジェクトのMDP計画エージェントが,そのトレードオフの合理性を伝達する手法として,その意思決定を説明できるアプローチを提案する。
論文 参考訳(メタデータ) (2020-04-27T17:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。