Probing the topology of the quantum analog of a classical skyrmion
- URL: http://arxiv.org/abs/2004.13526v2
- Date: Tue, 1 Dec 2020 04:41:00 GMT
- Title: Probing the topology of the quantum analog of a classical skyrmion
- Authors: O. M. Sotnikov, V. V. Mazurenko, J. Colbois, F. Mila, M. I.
Katsnelson, and E. A. Stepanov
- Abstract summary: In magnetism, skyrmions correspond to classical three-dimensional spin textures.
We show that the quantum skyrmion state can still be identified and fully characterized.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In magnetism, skyrmions correspond to classical three-dimensional spin
textures characterized by a topological invariant that keeps track of the
winding of the magnetization in real space, a property that cannot be easily
generalized to the quantum case since the orientation of a quantum spin is in
general ill-defined. Moreover, as we show, the quantum skyrmion state cannot be
directly observed in modern experiments that probe the local magnetization of
the system. However, we show that this novel quantum state can still be
identified and fully characterized by a special local three-spin correlation
function defined on neighbouring lattice sites -- the scalar chirality -- which
reduces to the classical topological invariant for large systems, and which is
shown to be nearly constant in the quantum skyrmion phase.
Related papers
- Stability of a quantum skyrmion: projective measurements and the quantum
Zeno effect [0.0]
Magnetic skyrmions are vortex-like quasiparticles characterized by long lifetime and remarkable topological properties.
We theoretically analyze the dynamics of a quantum skyrmion subject to local projective measurements.
We show that by performing repetitive measurements on a quantum skyrmion, it can be completely stabilized through an analog of the quantum Zeno effect.
arXiv Detail & Related papers (2023-08-21T20:03:25Z) - Reconstruction of classical skyrmions from Anderson towers: quantum
Darwinism in action [0.0]
We show that the classical skyrmion spin order can be reconstructed using only the low-energy part of the spectrum of the corresponding quantum spin Hamiltonian.
The results allow us to take a fresh look at the problem of quantum antiferromagnetism.
arXiv Detail & Related papers (2022-10-08T05:23:39Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Species of spaces [0.0]
The accent is put in situations where traces of noncommutativity, witness of an emblematic feature of quantum mechanise.
Complex canonical transformations, spin-statistics, topological quantum fields theory, long time semiclassical approximation and underlying chaotic dynamics are considered.
arXiv Detail & Related papers (2022-06-28T12:00:51Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.